

1. 本研究の目的

原子核によるミューオン捕獲事象[1] $\mu^{-} + A(N,Z) \rightarrow B^{*}(N+1,Z-1) + \nu_{\mu}$ $B^* \rightarrow C + x \cdot n + y \cdot p + \gamma (x, y = 0, 1, 2, \cdots)$

原子核ミューオン捕獲は不安定な放射性同位体を生成し、 スーパーカミオカンデ(SK)では太陽ニュートリノ観測のバックグラウンド 事象となる。

→ SKでミューオン核反応の研究が可能

ミューオン捕獲で生成される同位体 Q-value Half-life Reaction Isotope

4.¹⁶N, ¹⁵Cの生成率・分岐比測定

 χ^2 を用いて生成率を測定 $\chi^2_{\text{Total}} (R_{^{16}\text{N}}, R_{^{15}\text{C}}) = \chi^2_{\text{Time}} + \chi^2_{\text{Energy}}$

$$\begin{pmatrix} \chi_{\text{Time}}^2 = \sum_{i}^{n_{\text{Time}}} \frac{\left(N_i^{\text{Data}} - N_i^{\text{MC}}\right)^2}{(\sigma_i^{\text{Data}})^2 + (\sigma_i^{\text{MC}})^2 + (\sigma_i^{\text{Syst.}})^2} \\ \chi_{\text{Energy}}^2 = \sum_{i}^{n_{\text{Energy}}} \frac{\left(N_i^{\text{Data}} - N_i^{\text{MC}}\right)^2}{(\sigma_i^{\text{Data}})^2 + (\sigma_i^{\text{MC}})^2} + \left(\frac{1-p}{\sigma^{\text{E-scale}}}\right)^2 \end{cases}$$

・ミューオンの選択効率 ミューオン電荷比^[2] • 放射性同位体選択効率 を考慮して同位体の生成率・ 分岐比を計算

SKでは酸素原子核に捕獲され、			[Me]
0 はするな話(16 150 12 13)	16 N	$16 O(\mu^-, \nu)^{16} N$	10.4
<i>P</i> 所 坂 9 @ 1×1 (⁻ N, ⁻ C, ^{-−} D, ^{-−} D)	$^{15}\mathrm{C}$	$ {}^{16}{ m O}(\mu^-, u p)^{15}{ m C}$	9.7
が検出される。	$^{13}\mathrm{B}$	$ {}^{16}{ m O}(\mu^-, un2p){}^{13}{ m B} $	13.4
	$^{12}\mathrm{B}$	$160(\mu^{-}\nu\alpha)^{12}B$	13 3

V] \mathbf{S} 7.132.450.0172 0.0202

本研究は、¹⁶N, ¹⁵C および¹²Bの生成率および分岐比 の世界最高精度の測定を実施した。

また、ミューオン原子核捕獲によるβ崩壊は検出器内で一様・等 方的に起こるため、分岐比の理解により、 将来実験の新たなエネルギー校正手段としての活用が期待さ れる ex.) ハイパーカミオカンデ

2. SKにおけるミューオン捕獲事象の検出

5.¹²Bの生成率・分岐比測定

SKに宇宙線ミューオンが飛来 ー部ミューオンはSK内部で静止する

静止した負ミューオンの18%は 酸素原子核に捕獲され、不安定 な放射性同位体を生成する

静止ミューオンとβ崩壊事象のペアを探索することで、 酸素原子核捕獲による放射性同位体の測定ができる

3. 放射性同位体事象の選択

同位体事象候補を静止ミューオンからの

¹²Bは寿命が短いため、静止ミューオンから 0.5 秒以内の領 域で探索。 χ^2 を用いて生成率・分岐比を決定。 (¹⁶N, ¹⁵Cの混入は4.の結果を使用)

6. まとめ

水チェレンコフ検出器のSKでは酸素と ミューオンの核反応の研究が可能。

ミューオンと酸素の核反応で生成される 同位体 ¹⁶N, ¹⁵Cそして¹²Bの分岐比を測 定した。¹⁶Nを世界最高精度で測定し、 ¹⁵C, ¹²Bは初めて分岐比の測定をした。 現在¹³Bも含めた解析を進めている。

[3] B. Heisinger et al., Earth Planet. Sci. Lett. 200, 357 (2002).

[4] T. Sato et al., J. Nucl. Sci. Technol. 50, 913 (2013).

Reference

[1] D. Measday, Phys. Rep. 354, 243–409 (2001). [5] S. Abe and T. Sato, J. Nucl. Sci. Technol. 54, 101 (2017). [2] H. Kitagawa et al., Phys. Rev. D 110, 082008 (2024). [6] J. Allison et al., Nucl. Instrum. Meth. A 835, 186 (2016).