2023 年度 卒業論文

大口径光検出器の分解能向上のための 印加電圧特性評価

指導教員 西村 康宏 准教授

慶應義塾大学理工学部物理学科 西村研究室 牧野有里子

2024年2月29日

目 次

概要		6
第1章	"背景"。	8
1.1	素粒子	8
1.2	ニュートリノ	9
1.3	スーパーカミオカンデ	9
1.4	ハイパーカミオカンデ	10
第2章	光検出器	12
2.1	チェレンコフ光	12
2.2	光電変換	13
	2.2.1 外部光電効果 (光電効果)	14
	2.2.2 光感応素子	14
2.3	ハイブリッド光検出器 (HPD)	14
	2.3.1 原理	14
	2.3.2 特性	16
	2.3.2.1 波高分解能	16
	2.3.2.2 ゲイン	16
2.4	光電子増倍管 (PMT)	17
	2.4.1 原理	17
	2.4.2 種類	18
	2.4.3 特性	18
	2.4.3.1 収集効率	18
	2.4.3.2 ゲイン	19
	2.4.4 スーパーカミオカンデの光電子増倍管	21
	2.4.5 ハイパーカミオカンデの光電子増倍管	22
2.5	電荷分解能	23
第3章	光検出器の分解能測定	24
3.1	目的	24
3.2	HPD の分解能測定	24

	3.2.1	セットアップ	24
		3.2.1.1 Hybrid Photo Detector	25
	3.2.2	印加電圧を動かした分解能測定	28
		3.2.2.1 測定方法	28
		3.2.2.2 測定結果	30
		3.2.2.3 考察	34
3.3	PMT 6	の分解能測定	37
	3.3.1	セットアップ	37
		3.3.1.1 光電子増倍管	38
	3.3.2	第1ダイノードのみ印加電圧を動かした場合の分解能測定	40
		3.3.2.1 測定方法	40
		3.3.2.2 測定結果	41
		3.3.2.3 考察	47
	3.3.3	第1ダイノードと第2ダイノード以降の印加電圧比が固定で全体の	
		供給電圧を動かした分解能測定	49
		3.3.3.1 測定方法	49
		3.3.3.2 測定結果	49
		3.3.3.3 考察	54
第 4章	結論と	今後の展望	58
謝辞			58

参考文献

59

図目次

1.1	素粒子の標準模型 [2]	8
1.2	スーパーカミオカンデ検出器 [2]	9
1.3	ハイパーカミオカンデ検出器 [2]	10
2.1	チェレンコフ光イメージ図 [5]	12
2.2	チェレンコフ光説明図 [7]	13
2.3	外部光電効果原理図 [8]	14
2.4	HPD 原理図 [9]	15
2.5	HPD の加速印加電圧とゲイン [9]	16
2.6	HPD の AD 逆バイアス電圧とゲイン [9]	17
2.7	PMT 原理図 [9]	17
2.8	PMT 種類 [9]	18
2.9	PMT の第1ダイノード間電圧と相対収集効率 [9]	19
2.10	PMT の供給電圧とゲイン [9]	20
2.11	スーパーカミオカンデ PMT のモジュール [10]	21
2.12	スーパーカミオカンデ PMT の概略図 [10]	21
2.13	ハイパーカミオカンデ PMT の概略図 [11]	22
3.1	暗箱内 HPD	24
3.2	HPD セットアップ図	25
3.3	実際の HPD セットアップ	25
3.4	使用した HPD	25
3.5	HPD 全体モジュール [13]	26
3.6	$\operatorname{HPD} \mathcal{T} \mathcal{I} \mathcal{F} \mathcal{V} \mathcal{T} [13] \dots \dots \dots \dots \dots \dots \dots \dots \dots $	26
3.7	コントロール電圧と加速印加電圧の関係 [13]	27
3.8	コントロール電圧と AD 逆バイアス電圧の関係 [13]	27
3.9	加速印加電圧と電子打ち込みゲインの関係 [13]	28
3.10	HPD コントロール電圧 3.0 V のオシロスコープ画面	29
3.11	HPD コントロール電圧 3.0 Vの1光電子の電荷ヒストグラム	29
3.12	HPD コントロール電圧 3.0 V の1光電子の電荷ヒストグラムのフィッティ	
	ング	30

3.13	HPD 加速印加電圧ごとのオシロスコープの画面	31
3.14	HPD 加速印加電圧ごとの1光電子ヒストグラムのガウシアンフィッティング	32
3.15	HPD 加速印加電圧と mean	33
3.16	HPD 加速印加電圧と sigma	33
3.17	HPD 加速印加電圧と分解能	34
3.18	HPD 加速印加電圧とゲイン	34
3.19	HPD mean と sigma とフィッティング	36
3.20	HPD mean と分解能とフィッティング	36
3.21	暗箱内 PMT	37
3.22	PMT 光源配置図	37
3.23	PMT 供給電圧回路図	37
3.24	PMT 供給電圧装置	38
3.25	PMT セットアップ図	38
3.26	実際の PMT セットアップ	38
3.27	使用した PMT の外寸 [14]	39
3.28	使用した PMT の供給電圧とゲインの関係 [14]	39
3.29	使用した PMT の回路図 [14]	40
3.30	印加電圧 1700 V のときの PMT のオシロスコープ	41
3.32	PMT 第1ダイノード印加電圧のみ変化させた測定のオシロスコープ...	43
3.34	PMT 第1ダイノード印加電圧のみ変化させた測定のガウシアンフィッティ	
	ング	45
3.35	PMT 第1ダイノード印加電圧のみ変化させた測定の印加電圧と mean	46
3.36	PMT 第1ダイノード印加電圧のみ変化させた測定の印加電圧と sigma	46
3.37	PMT 第1ダイノード印加電圧のみ変化させた測定の 印加電圧と分解能	47
3.38	PMT 第1ダイノード印加電圧のみ変化させた測定の印加電圧とゲイン	47
3.39	PMT 第1ダイノード印加電圧のみ変化させた測定の mean と sigma のフィッ	
	ティング	48
3.40	PMT 第1ダイノード印加電圧のみ変化させた測定の mean と分解能のフィッ	
	ティング	48
3.41	PMT 全体の供給電圧を変化させた測定のオシロスコープ	50
3.42	PMT 全体の供給電圧を変化させた測定のガウシアンフィッティング	52
3.43	PMT 全体の供給電圧を変化させた測定の印加電圧と mean	53
3.44	PMT 全体の供給電圧を変化させた測定の印加電圧と sigma	54
3.45	PMT 全体の供給電圧を変化させた測定の印加電圧と分解能	54
3.46	PMT 全体の供給電圧を変化させた測定の印加電圧とゲイン	55
3.47	PMT 全体の供給電圧を変化させた測定の mean と sigma のフィッティング	55

3.48	PMT 全体の供給電圧を変化させた測定の mean と分解能のフィッティング	56
3.49	PMT 全体の供給電圧を変化させた測定の第1ダイノードにおける mean と	
	sigma のフィッティング	57
3.50	PMT 全体の供給電圧を変化させた測定の第1ダイノードにおける mean と	
	分解能のフィッティング	57

表目次

3.1	HPD の入出力ピン [13]	26
3.2	HPD 測定で印加したコントロール電圧と加速印加電圧	28
3.3	HPD 測定 ガウシアンフィッティングの結果と分解能	33
3.4	PMT 第1ダイノード印加電圧のみ変化させた測定のガウシアンフィッティ	
	ング 結果	46
3.5	全体の供給電圧を変化させた測定の実際の印加電圧	49
3.6	PMT 全体の供給電圧を変化させた測定のガウシアンフィッティングの結果	53

概要

ハイパーカミオカンデは、2027 年からの観測を予定している水チェレンコフ宇宙素粒 子観測装置で、ニュートリノを通じて素粒子物理学や宇宙物理学の謎を解明することを目 的としている。現在運用されているスーパーカミオカンデの約 10 倍の有効体積を持ち、 観測統計量が大幅に増加するため、光検出器の精度向上が重要となる。当初新型光検出器 として、PMT の増幅部分を改良した Box Line 型光電子増倍管 (PMT: Photomultiplier Tube) と、増幅部分のダイノードの代わりにアバランシェ・ダイオード (AD) を使用した ハイブリッド型光検出器 (Hybrid Photo Detector : HPD) の2種類が開発された。しか し、HPD の量産性の課題や PMT の性能の十分な向上の観点から、ハイパーカミオカン デでは4 万本の Box Line 型 PMT が使用される予定である。

ハイパーカミオカンデにおいては、光検出器によって得られた電荷と時間の情報を用い てニュートリノ反応位置を再構成し、ニュートリノの種類、エネルギー、到来方向を決定 する。正確なニュートリノ反応の再構成のために光検出器には、1 光電子光量を識別可能 な電荷分解能やナノ秒単位の時間分解能が求められる。

本研究では、ハイパーカミオカンデで使用予定の 50 cm 口径 PMT を使って、PMT の 電荷分解能の精度向上の可能性を探るため、印加電圧特性を評価した。まず電荷分解能が 高いことで知られている HPD において、供給電圧に対する電荷分解能の依存性を確認し た。次に PMT において、HPD と同様に印加電圧を上げることにより高い分解能を得ら れるかどうかを確認した。第1ダイノードのみの印加電圧の依存性を確認した後、全体印 加電圧の特性について考えた。

本研究において、HPDと同様にPMTの分解能が電圧に依存していることが分かった。 一方 HPD での高電圧に到達する前にサチュレーションが見られことから、到達できる分 解能に限界があることが分かった。また、分解能向上のための印加電圧の増加において、 第1ダイノードの印加電圧における依存性が重要であることがわかった。

7

第1章 背景

1.1 素粒子

素粒子は物質の最小単位であり、原子等を構成している。かつて、原子が最小単位とさ れていたが、1897年に電子の存在が発見され、原子に内部構造があることが明らかになっ た。1911年に原子核が発見され、その後1919年に陽子、1932年に中性子が発見され、原 子核が陽子と中性子によってできていることが解き明かされた。その後の宇宙観測技術や 加速器実験技術の発達により、より小さな粒子の存在が徐々に明らかになった。1964年、 陽子や中性子を構成する、クォークという素粒子の存在が予言され、1969年にはアメリ カの加速器実験でクォークが存在する証拠が検出された。こうした研究の積み重ねによ り、物質の最小単位である素粒子の正体が明らかになった。[1]

素粒子の種類は、粒子が従う統計によって2種類に分類され、フェルミ統計に従う粒子 をフェルミ粒子、ボース統計に従う粒子をボース粒子と呼ぶ。フェルミ粒子は、物質を構 成する素粒子で、クォークとレプトンとに分類される。一方ボース粒子は、力を媒介する 素粒子で、素粒子間の相互作用を伝達するゲージ粒子と、素粒子に質量を与えるヒッグス 粒子がある。以下に素粒子の種類について相互作用を考慮したモデルである、標準模型を 表す。

図 1.1 素粒子の標準模型 [2]

1.2 ニュートリノ

ニュートリノは、レプトン族の電子、ミュー粒子、タウ粒子の3つのフレーバーに対応 した、電荷をもたず弱い相互作用しかないレプトンである。ニュートリノの発見は、1930 年にパウリが、新しい粒子である「中性子」があるのではないかと仮説を立てたことから はじまる。この仮説によると、電子に関連した中性子がβ崩壊中に存在し、これは強い 相互作用を受けず、エネルギー保存と運動量保存が可能にするものであるとされた。その 後フェルミがこの粒子をニュートリノと名付けた。実際には1952年に、ライネスらが原 子炉から放出されるニュートリノの観測に初めて成功し、その存在が確認された。[3] 発 見当初は、ニュートリノには質量がないと考えられていた。1998年に梶田隆章らが、3 つのニュートリノのフレーバーはそれぞれに遷移しているというニュートリノ振動を発見 し、ここからニュートリノに質量があることが示された。スーパーカミオカンデでは、こ のニュートリノ振動の性質や陽子崩壊について詳細に解明するために、現在も実験と解析 が行われている。また、ニュートリノの CP 対称性の破れや核子崩壊を発見するためにハ イパーカミオカンデが建設中である。スーパーカミオカンデとハイパーカミオカンデにつ いては、1.3 節,1.4 節で解説していく。

1.3 スーパーカミオカンデ

図 1.2 スーパーカミオカンデ検出器 [2]

スーパーカミオカンデは、世界最大の水チェレンコフ宇宙素粒子観測装置で、1991年 から建設が始まり 1996年4月より観測を開始した。スーパーカミオカンデ検出器は、岐 阜県飛騨市神岡鉱山内の地下 1000 m に位置しており、5万トンの水を蓄えた、直径 39.3 m、高さ 41.4 m の円筒形水タンクと、その壁に設置された光電子増倍管と呼ばれる約1万 3千本の光センサーなどから構成されている。スーパーカミオカンデの光電子増倍管につ いては、2.4 節に示す。

スーパーカミオカンデ実験の主な目的は4つある。1つ目はニュートリノの性質の解明 で、太陽ニュートリノ、大気ニュートリノ、人工ニュートリノなどの観測を通じて、ニュー トリノの性質の全容を解明することで、これは宇宙の初期に物質がどのように作られた かという謎に迫ることにつながる。2つ目はニュートリノを利用した星や宇宙の観測で、 ニュートリノを使って太陽内部の活動を直接知ることや、星の爆発過程の詳細を調べるこ とができる。ここから、宇宙の歴史を探ることにも繋がる。3つ目は陽子崩壊現象の探索 で、物質に働く4つの力をまとめて説明する大統一理論が予言している、陽子が崩壊して 別のより軽い粒子になることを発見しようとしている。この発見は直接、大統一理論の実 証に繋がる。4つ目は超新星背景ニュートリノの観測で、2020年8月からスーパーカミオ カンデの純水中にレアアースの1種であるガドリニウムを加えて観測を始め、反ニュート リノの観測感度向上と、超新星背景ニュートリノの世界初の観測を目指す。[5]

1.4 ハイパーカミオカンデ

図 1.3 ハイパーカミオカンデ検出器 [2]

ハイパーカミオカンデは、現行のスーパーカミオカンデを凌駕する巨大水タンクとその タンクの中に並べる超高感度光センサーからなる世界最大の水チェレンコフ宇宙素粒子観 測装置となる予定である。2020年に建設が開始し、2027年に運転を開始する予定だ。円 筒部分は直径 69 m、高さ 73 m でドーム部と合わせると地下の人工空洞としては世界最大 規模の大空間となり、検出器は直径 68 m、深さ 71 m の円筒形のタンクに超純水を満たし たものになる。タンクの体積は 26 万トン、有効体積は 19 万トンでスーパーカミオカンデ の約 10 倍である。タンクの壁には大型の超高感度光センサーが 4 万本取り付けられ、水 中で発生するチェレンコフ光をとらえる。チェレンコフ光については、2.1 節で解説する。

ハイパーカミオカンデ実験の主な目的は、4つある。1つ目は CP 対称性の破れを測定 することである。C 対称性とは粒子と反粒子を入れ替える対称性であり、P 対称性とは 空間対称性である。そして、CP 対称性とは、粒子と反粒子を入れ替え空間反転した世界 で、対称性が保存される確率を意味する。ニュートリノにおいて、粒子と反粒子の対称性 の保存が崩れていることがわかることで、ニュートリノにおいて CP 対称性が破れている ことを示すことができ、これは物質の生成や宇宙の成り立ちのメカニズムを解明する手 掛かりの1つとなる。2つ目はスーパーカミオカンデと同じく陽子崩壊の探索である。3 つ目はフレーバーごとののニュートリノの質量の順番を決定することで、この解明によっ て宇宙初期の様相を理解することにつながる。4つ目もスーパーカミオカンデと同じく、 ニュートリノを利用した星や宇宙の観測であり、より規模の大きな実験が行われる予定で ある。[6]

第2章 光検出器

2.1 チェレンコフ光

チェレンコフ光は、荷電粒子が媒体中で光速よりも速く走ると放出される光である。荷 電粒子が絶縁体中を通るとその経路にそって局部的分極を生じ、分極された分子が元の状 態に戻るときに電磁波が発生する。これがチェレンコフ光として観測される。チェレンコ フ光は図 2.1 のイメージのように、円錐形に放出される。

図 2.1 チェレンコフ光イメージ図 [5]

チェレンコフ光 が角度 θ 内において生じ、円錐形になることはホイヘンスの波動論に よって説明される。この時の説明図を図 2.2 に示す。

図 2.2 チェレンコフ光説明図 [7]

荷電粒子が AB 間を運動したときを考える。飛跡 AB 上の任意の点 P₁, P₂, P₃ から生 じた波動は干渉性であるため、平面波面 BC を形成する。粒子の AB 間の運動と光の AC 間 の進行とが同一時間であるとき、この干渉が起こることがわかる。ここで、媒体の屈 折率 を n、真空中の光速度を c、粒子速度を v とする。このとき、この媒体中の光速度は c/nで与えられ、 $\beta = v/c$ とする。 時間 $\Delta \tau$ において粒子速度は βc でも表せるので、粒 子は距離 AB = $\beta c \cdot \Delta \tau$ を運動し、一方光は距離 AC = $(c/n) \cdot \Delta \tau$ を進行する。これによ り角度 θ において、以下の式が成り立つ。

$$\cos\theta = \frac{1}{\beta n} \tag{2.1}$$

これをみると、チェレンコフ光は半角度が式の円錐状に放射され指向性をもつことが確か められる。またこの式から、荷電粒子のエネルギーならびに媒体の屈折率が大きいほど光 の放射範囲が広くなることがわかる。

2.2 光電変換

光検出器は、光エネルギーが光感応素子に到達すると、その光エネルギーを電気信号に 変換する。これを光電変換という。光電変換は、外部光電効果 (光電効果ともいう)と内 部光電効果の2種類に大別される。前者は真空中に光電子が放出される現象で、後者は光 電子を伝導体帯へ励起するものである。[9] 光検出器の光電面には一般的に外部光電効果 が使われているため、外部光電効果について詳しく説明する。

2.2.1 外部光電効果(光電効果)

外部光電効果とは、金属や半導体の表面に光を照射すると、光の持つエネルギーによって、金属内や半導体内の電子が外界である真空空間に飛び出す現象である。金属を例にとると、図 2.3 に示すように、導体である金属ではフェルミ準位まで電子が満たされている。

そのため、電子が真空空間に出るには、電子は真空準位と仕事関数を超えるエネルギー を獲得する必要がある。そのため、光から得たエネルギーが真空準位と仕事関数の総和の エネルギーより大きく、金属の表面に到達した電子のみが真空空間に飛び出すことができ る。そのため、外部光電効果が起こる電子は、物質表面の付近の電子であることが多い。 この外部光電効果は、微弱な光を大きな光電流に変換することができるため、光電子増倍 管や光電管の光電変換部分に使用されている。

図 2.3 外部光電効果原理図 [8]

2.2.2 光感応素子

光感応素子は、光を受け取りそれに応じて電気信号を発生させる素子だ。主な種類には 光電子増倍管、フォトダイオード、フォトトランジスタなどがある。簡単に説明すると、 光電子増倍管は、光子が光電面に当たって複数の電子が生成され、これが電子増倍段を 通って増幅されていくものである。フォトダイオードは、光子の吸収により電子ホール対 が生成され、これが電流を生じるものである。フォトトランジスタはフォトダイオードの 出力信号を増幅するトランジスタが組み合わされたものである。今回は、光電子増倍管に 着目して実験を行った。

2.3 ハイブリッド光検出器 (HPD)

2.3.1 原理

ハイブリッド光検出器は、HPD(Hybrid Photo Detector) とも呼ばれ、電子管に半導体 素子、つまりアバランシェ・ダイオードを内蔵した光電子増倍管で、光電面から放出した 光電子を高電圧で加速し半導体素子に直接打ち込むことで、2次電子を増倍している。電 子増倍の揺らぎが非常に少なく、単1光電子の分解能や安定性、時間特性に優れていると いう特徴がある。HPDの原理図を図 2.4 に示す。

図 2.4 HPD 原理図 [9]

光を電子に変換する光電面と、打込み用に設計されたアバランシェ・ダイオード (Avalanche Diode:AD) が真空容器内に入っている構造となっている。原理としてはまず、光電面に光 が入射すると、入射光量に応じた光電子が光電面から放出され、10 kV 程度の電圧で加速 され、アバランシェ・ダイオードに打込まれる。この打ち込まれたときの電子の増倍を、 電子打ち込みゲインと呼ぶ。アバランシェ・ダイオードでは、これらの光電子の入射エネ ルギーに応じた電子正孔対を生成し、2 次電子を増倍している。これをアバランシェ・ゲ インと呼ぶ。

HPD に内蔵されているアバランシェ・ダイオードは、およそ 3.6 eV の入射電子エネル ギーにつき、1 対の電子正孔対を発生する。ここで、光電面とアバランシェ・ダイオード との電位差、つまり加速印加電圧を V_{pC} とする。これは、光電面供給電圧と呼ぶこともあ る。一方、アバランシェ・ダイオードで決まるスレッシュホールド電圧を V_{th} とする。ス レッシュホールド電圧とは、光電変換が開始されるために必要な最小の光エネルギーを示 す。これらを用いて、電子打ち込みゲイン G_b は以下の式のようになる。

$$G_b = \frac{V_{pC} - V_{th}}{3.6} \tag{2.2}$$

この電子打込みで得られた2次電子群は、さらにアバランシェ・ダイオード内部でアバラ ンシェ増管される。アバランシェ・ゲインは、アバランシェ・ダイオード逆バイアス電圧 (AD 逆バイアス電圧)に応じて増減する。ここで、アバランシェ・ゲインを*G_t*とすれば、 HPD 全体のゲイン*G*は以下の式で表せる。

$$G = G_b \times G_t \tag{2.3}$$

2.3.2 特性

2.3.2.1 波高分解能

HPDは、一般的な光電子増倍管の第1ダイノードのゲインに相当する電子打込みゲインが非常に高いため、電子増倍のゆらぎの小さい理想的な信号増幅が可能であるという特徴がある。そのため、1光電子や2光電子など、複数のピークの検出が可能である。今回この特性を利用して、HPDにおいても電荷分解能の測定を行った。

2.3.2.2 ゲイン

2.3.1 節で説明したように、HPD のゲインは電子打込みゲイン G_b とアバランシェゲイン G_t の積で表される。図 2.5 に加速印加電圧と電子打ち込みゲインの関係を示す。

これをみると、電子打込みゲインは式に従い、ある閾値を越えると加速印加電圧に比例 して増加することがわかる。電子打込みゲインは、電子の加速電圧とアバランシェ・ダイ オードの電子入射面の構造に依存するが、一般的にアバランシェ・タイオードの電子入射 面は均質なため、同じ加速印加電圧における個々の電子打込みゲインの個体差は非常に小 さくなる。

図 2.5 HPD の加速印加電圧とゲイン [9]

図 2.6 にアバランシェ・ダイオードのゲインおよびリーク電流特性を示す。アバランシェ ゲインは、アバランシェ・ダイオードに供給する AD 逆バイアス電圧が一定値を越えたあ たりから徐々に増加し、ブレークダウン電圧付近で急激に増加する特性がある。浜松ホト ニクス製 HPD では、リーク電流が1 mA に到達する電圧をブレークダウン電圧にしてい る。ブレークダウン電圧付近ではゲインが急激に変化するため、HPD を安定動作させる ことが難しくなる。したがって、最大 AD 逆バイアス電圧は、ブレークダウン電圧から 10 V 程度下げた電圧としている。

図 2.6 HPD の AD 逆バイアス電圧とゲイン [9]

2.4 光電子增倍管 (PMT)

2.4.1 原理

光電子増倍管は、PMT(Photomultiplier Tube)ともよばれ、一般的にガラスなどに封じられた真空管で、入射窓、光電面、集束電極、電子増倍部 (ダイノード)、陽極より構成されている。その構造を図 2.7 に示す。

図 2.7 PMT 原理図 [9]

光電子増倍管に入射した光が信号出力される過程は、まずガラス窓を透過して入射した 光が光電面内の電子を励起し、真空中に光電子を放出する。この際に外部光電効果が作用 している。放出された光電子は、集束電極で加速・収束され、第1ダイノードに衝突し2 次電子を放出する。これにより電子が増倍する。2次電子増倍がそれ以降の電子増倍部に 衝突し、2次電子放出を繰り返していくことで次々に増倍が繰り返される。最終ダイノー ドより放出された2次電子群は最終的に10⁶ 倍~10⁷ 倍になり、陽極より取り出され、電 流として検知される。

2.4.2 種類

光検出器には、電子を増倍させるダイノードが組み込まれている。ダイノードには多く の種類があり、使用目的に応じて段数や構造を選択する。図 2.8 に、ダイノードの種類を 示す。この中で、HPDでは電子打ち込み型のダイノードが組み込まれており、スーパー カミオカンデではベネシアンブラインド型が使用された。ハイパーカミオカンデではボッ クスライン型が使用される予定である。電子打ち込み型は 2.3.1 節でも言及したように、 安定して高い電荷分解能を提供する。また、ベネシアンブラインド型は大口径の光検出器 として使用しやすいという特徴をもつ。ボックスライン型は従来のボックス型とライン型 の組み合わせで、ボックス型より時間分解能や時間応答特性が優れておりライン型より収 集効率が優れているという特徴をもつ。

図 2.8 PMT 種類 [9]

2.4.3 特性

2.4.3.1 収集効率

光電子増倍管の電流増倍機構は、電子の軌道を考慮して設計され、効率良くダイノード 間で増倍するように考慮されている。しかし、増倍に寄与しない電子も一定数存在するこ とがわかっている。光電子増倍管において、光電面から出た光電子数と最終的に陽極から 出力されるパルス数の割合を収集効率と呼ぶ。一般的に重要であるのは、第1ダイノード に入射した光電子が第2ダイノード以後で抜けることなく、有効に増倍する部分である。 第2ダイノード以後でも増倍に寄与しない2次電子は存在するが、後段にいくほど2次電 子の数が増えるため収集効率に与える影響は少なくなると考えられる。例として、28 mm 怪ヘッドオン型光電子増倍管における陰極一第1ダイノード間の電圧に対する第1ダイ ノードにおける相対収集効率を図 2.9 に示す。

図 2.9 PMT の第1ダイノード間電圧と相対収集効率 [9]

これを見ると、陰極 – 第1ダイノード間の電圧が適切でないと収集効率に影響がある ことがわかる。特に電圧が低い場合は、第1ダイノードの有効部分に到達する光電子の数 が少なくなり収集効率が低下するといえる。このPMTでは、陰極 – 第1ダイノード間に は、100 V 以上かけることが適当であるとわかる。この収集効率は、今回測定した電荷分 解能にも直接影響を与える。また、検出効率を算出する際にも用いられている。検出効率 とは、微弱な光測定において光電子増倍管に入射する信号のうち検出された割合をいい、 フォトンカウンティング法においては光電面の量子効率と収集効率の積で表される。

2.4.3.2 ゲイン

ゲインは電流増倍率ともいい、信号が入力から出力までどれだけ増幅されたかを示す数 値である。光電子増倍管の場合、複数のダイノードで増倍されている。まず、光電面から 放出された光電子流 *I*_k は、第1ダイノードに入射して 2 次電子流 *I*_{d1} を放出する。この時 の第1ダイノードにおける 2 次電子放出比は式 (2.4) になる。

$$\delta_1 = \frac{I_{\rm d1}}{I_{\rm K}} \tag{2.4}$$

さらにこの後、第*n*ダイノードまで増幅を繰り返していく。このとき、第*n*ダイノードでの2次電子放出比は以下の式で表される。

$$\delta_n = \frac{I_{\mathrm{d}n}}{I_{\mathrm{d}(n-1)}} \tag{2.5}$$

よって、陽極電流は以下の式で表される。

$$I_p = I_k \cdot \alpha \cdot \delta_1 \cdot \delta_2 \cdots \delta_n \tag{2.6}$$

これを変形すると、

$$\frac{I_p}{I_k} = \alpha \cdot \delta_1 \cdot \delta_2 \cdots \delta_n \tag{2.7}$$

となり、ここで α は収集効率を表す。ゲインを μ と表すことにすると、式 (2.7) から電子の個数と電流は比例関係にあるためゲインは

$$\mu = \alpha \cdot \delta_1 \cdot \delta_2 \cdots \delta_n \tag{2.8}$$

と表される。また、一般的に2次電子放出比は、ダイノード間の電圧 *E* の関数であり、以下の式になる。

$$\delta = aE^k \tag{2.9}$$

よって、収集効率を1とし、光電子増倍管のダイノードの数を*n*、全体の供給電圧を*V*と すると、ゲインは式 (2.10)で表される。

$$\mu = (aE^{k})^{n} = a^{n} \left(\frac{V}{n+1}\right)^{kn} = AV^{kn}$$
(2.10)

これをみると、ゲインは供給電圧の kn 乗に比例することがわかる。代表的な供給電圧対 ゲイン特性を図 2.10 に示す。

図 2.10 PMT の供給電圧とゲイン [9]

これは両対数グラフで描かれているためこの直線の傾きは*kn*となる。このように、供 給電圧を上げる程ゲインは高くなることがわかる。

2.4.4 スーパーカミオカンデの光電子増倍管

スーパーカミオカンデの水タンクはステンレス製のフレームによって2槽式になって おり、内側を内水槽、外側を外水槽と呼んでいる。このモジュールの模式図を図 2.11 に 示す。

図 2.11 スーパーカミオカンデ PMT のモジュール [10]

内水槽は直径約 33.8 m、高さ約 36.2 m、体積約 3.25 万 t で、スーパーモジュールの内 側に 20 cm 口径の PMT が 11129 本取り付けられている。この PMT は浜松ホトニクスと 開発されたもので、図 2.12 に概略図を示す。

図 2.12 スーパーカミオカンデ PMT の概略図 [10]

一方、外水槽は厚さ約2m、体積約1.75万tで、内水槽を囲むような設計となっており、スーパーモジュールの外側に20cm口径のPMTが1885本取り付けられている。異な

る PMT の間は、ブラックシートと呼ばれる反射率が非常に低いシートで覆われていて、 内水槽と外水槽を光学的にも分離している。

2.4.5 ハイパーカミオカンデの光電子増倍管

ハイパーカミオカンデもスーパーカミオカンデと同様、内水槽と外水槽の2つの光学的 に独立した検出器部から構成されている。内水槽は主検出器部であり、内水槽の側面には 最大で 40000 本の 50 cm 口径の超高感度光センサーが敷き詰められる。この超高感度光 センサーを用いることで、ニュートリノ反応や陽子崩壊から発生する非常に微弱なチェレ ンコフ光を正確に測定することができ、これにより、電子やミューオンと呼ばれる素粒子 を 99 % 以上の正確さで粒子識別することができるといわれている。この光電子増倍管の 概略図を図 2.13 に示す。

図 2.13 ハイパーカミオカンデ PMT の概略図 [11]

外水槽は内水槽の外周を覆うように設置され、外水槽の側面には最大で 10000 本の 8 cm 口径の高感度光センサーが敷き詰められる。外水槽検出器は、検出器の外から入って くる宇宙線など、物理観測にとってノイズとなるものを識別して除去するために使われ る。ノイズ事象の識別能力は 99.9 % 以上になる。

スーパーカミオカンデとの大きな違いは、設備の大きさと検出器の精度の向上である。 観測統計量が大幅に増加するため光検出器の精度向上が重要視し、当初新型光検出器とし て、光電子増倍管の増幅部分を改良した Box Line 型光電子増倍管とハイブリッド光検出 器の2種類が開発された。しかし、ハイブリッド光検出器の量産性の課題や光電子増倍管 の性能の十分な向上の観点から、ハイパーカミオカンデでは4万本の Box Line 型光電子 増倍管が使用される予定となった。[12] これは、スーパーカミオカンデで使われている光 電子増倍管から、光検出効率・光量測定精度・時間測定精度といった基本的な性能をいず れも約2倍へ向上させた新型大口径高感度光電子増倍管であるとされている。約2倍の水 圧に耐えるように強度も改良され、バックグラウンドとなる放射性物質の含有量も半分に 抑えられた。光電面の金属板の形状の変更や電子の数を増幅するダイノード構造の大幅な 変更が施されている。また、複眼光センサーも併用する予定で、検出時間精度の高い直径 8cmの光電子増倍管を複数束ねて密閉し、解像度を上げることが可能になっている。[6]

2.5 電荷分解能

電荷分解能は、検出された信号の電荷を正確に決定する能力を示す指標のことである。 電荷分解能が高い場合、同じエネルギーの光子によって生成される電子の数を正確に計測 できるため、エネルギーごとの信号の選別や背景ノイズの低減などにも役に立つ。電荷分 解能は次のように定義される.

電荷分解能 =
$$\frac{\ell' - \rho o \text{fm} (\text{sigma})}{\ell' - \rho o \rho v o c a \overline{d} (\text{mean})}$$
 (2.11)

今回は2つの光検出器、ハイブリッド光検出器と光電子増倍管とにおいて、分解能の精 度を高めるために印加電圧を変えて分解能の測定を行い、その特性について考えた。

第3章 光検出器の分解能測定

3.1 目的

ハイパーカミオカンデでは観測統計量が大幅に増加するため、光検出器の精度向上が重要となる。2.3.2.2節、2.4.3.2節で説明したように、ゲインの増加は印加電圧の増加に大きく影響を受ける。そのため、高いゲインを得るためには、印加電圧を高くすることが必要だと考えられる。

HPD は打ち込みゲインが高いことがわかっているため、電圧が高い場合分解能がどこ までよくできるかの指標として測定を行った。この指標に基づき、ハイパーカミオカンデ で使用予定の PMT では同様の分解能が得られるかを検証した。

3.2 HPD の分解能測定

3.2.1 セットアップ

暗箱内にHPDを配置した様子を以下の図 3.1 に示す。また、光源としてレーザーがHPD に入射するように配置した。このとき、1 光電子の光量がでるように光源を設定した。

図 3.1 暗箱内 HPD

暗箱にはケーブルが通るように穴をあけ、全体を暗幕で覆った。電源電圧を用いて印加 電圧を変えていき、出力をオシロスコープに繋いで波形をプログラムを用いて取得して解 析を行った。オシロスコープは、チャンネル1に HPD の出力を繋ぎ、チャンネル2に光 源の同期信号をトリガーとしてつないだ。全体のセットアップについては、図 3.2 に、実 際の装置のセットアップを図 3.3 に示す。

図 3.2 HPD セットアップ図

図 3.3 実際の HPD セットアップ

3.2.1.1 Hybrid Photo Detector

今回使用した HPD は、図 3.4 に示すように浜松ホトニクス株式会社製の R12112-10 を 使用した。

図 3.4 使用した HPD

使用した型番は EHD00102 であった。これは 20 cm 径の HPD で、感度波長範囲は 300 ~650 nm、光電面はバイアルカリ、2 次電子増倍方式は半導体電子打ち込み式、ターゲッ ト半導体は 5 mm 径のアバランシェダイオード、光電面 – ターゲット間の最大電圧 10 kV であった。 また今回使用した HPD 全体のモジュールは図 3.5 のようになっており、光検出器の部分 (HPD) とプリアンプ部に分かれている。

図 3.5 HPD 全体モジュール [13]

プリアンプは、HPDの信号を増幅する電子回路の一部である。これを図 3.6 に示す。光 が入射すると光電子が発生し電場加速後の打ち込みで増幅され、その後プリアンプはこの 増幅された信号をさらに増幅し、処理している。

図 3.6 HPD プリアンプ [13]

プリアンプ部の基板から入力出力を行うために、電源コントロール用ケーブルをつない だ。今回の入力出力ピンの役割と条件を表 3.1 に示す。

Pin Number	Function	Description
1	Vcc	+8V to +10V
2	GND	for Power Return
3	GND	for Power Return
4	GND	for Module GND Level Referencing
5	Latch	Overload Protection Indicator
6	HV Control	Apply 0 to 4V for HV control
7	LV Control	Apply 0 to 4V for LV control
8	Enable	Apply +5V to enable the output
9	HV Monitor	Analog HV Output Monitor (0 to +4V)
10	LV Monitor	Analog LV Output Monitor (0 to +4V)

表 3.1 HPD の入出力ピン [13]

プリアンプ回路とともに2チャンネル高電圧電源が含まれており、外部入力電圧に比例 した高電圧を印加できる。入力した電圧をコントロール電圧と呼ぶ。加速印加電圧とコン トロール電圧と供給電圧の関係は図 3.7 に表される。

図 3.7 コントロール電圧と加速印加電圧の関係 [13]

ここからコントロール電圧と加速印加電圧の関係を算出すると式 (3.1) が成り立つこと がわかった。

同様に、AD 逆バイアス電圧も電源電圧に比例した高電圧が供給される。このときの関係 は図 3.8 で、ここからコントロール電圧と AD 逆バイアス電圧の関係を算出すると式 (3.2) が成り立つ。

図 3.8 コントロール電圧と AD 逆バイアス電圧の関係 [13]

AD 逆バイアス電圧 $V = 255 \times コントロール電圧 V - 10V$ (3.2)

例として、コントロール電圧は、3.0 V で実際の加速印加電圧 (HV と呼ぶ) に 8530 V か かる。 実際にかかる加速印加電圧と打ち込みゲインは図 3.9 のようになることが知られ ており、印加電圧の変化に対してゲインの変化が大きく影響を受けていることがわかる。 また 1.25 V で実際の AD 逆バイアス電圧 (LV と呼ぶ) に 309 V かかる。この LV は固定し て実験を行った。 今回は、AD 逆バイアス電圧は固定し加速印加電圧電圧のみ動かして測定を行った。ここで、

図 3.9 加速印加電圧と電子打ち込みゲインの関係 [13]

3.2.2 印加電圧を動かした分解能測定

3.2.2.1 測定方法

HV のコントロール電圧を 2.0 V から 4.2 V まで動かしていった。このとき実際に加速 印加電圧にかかっている電圧は表 3.2 となっていた。

コントロール	光電面供給		
電圧 (V)	電圧 (V)		
2.2	6282		
2.3	6563		
2.5	7125		
2.8	7968		
3.0	8530		
3.5	9935		
4.0	11340		
4.2	11902		

表 3.2 HPD 測定で印加したコントロール電圧と加速印加電圧

LV のコントロール電圧は 1.25 V まま固定した。このとき、実際に AD 逆バイアス電圧 にかかっていたのは 309 V であった。まずオシロスコープで 1 光電子を確認した。HV の コントロール電圧が 3.0 V、つまり実際の加速印加電圧 8530 V ときのオシロスコープの 画面を例として図 3.10 に示す。

図 3.10 HPD コントロール電圧 3.0 V のオシロスコープ画面

横軸は 50 ns/div、縦軸はチャンネル 1 が 5 mV/div、チャンネル 2 が 500 mV/div を 表している。また、チャンネル 2 よりトリガーをかけた。

オシロスコープの画面について左側を基準0%、右側を100%として、画面の50%から90%までを積分し、30000イベント取得した結果から、面積を求めて解析アプリケーションである ROOT 形式に保存した。この後 ROOT を用いてヒストグラムの描画とフィッティングを行った。HV のコントロール電圧が3 V のときの ROOT 解析後のヒストグラムを図 3.11 に示す。ROOT は欧州原子核研究機構 (CERN) によって作成された情報処理のためのフレームワークであり、高エネルギー分野で一般的に使用されている。

図 3.11 HPD コントロール電圧 3.0 Vの1 光電子の電荷ヒストグラム

図 3.11 は横軸が電荷を表し、単位は pC(ピコクーロン)、縦軸がイベント数を表してい る。横軸の値は、オシロスコープ画面について波形がないペデスタル部分の面積が0にあ たるようプログラムを設定した。このとき、横軸の値が5 pC あたりでピークが見えるの がわかる。1 光電子の電荷ヒストグラムにおいて、ガウシアンを用いたフィッティングを 図 3.12 に示す。ガウシアンフィッティングは、データの統計数が正規分布に従っていると 仮定して、そのパラメータである平均、標準偏差、振幅を最適にフィットする手法である。

図 3.12 HPD コントロール電圧 3.0 Vの1光電子の電荷ヒストグラムのフィッティング

式 (2.11) を用いると、今回電荷分解能は標準偏差 sigma を平均 mean で割った値で表す ことができる。この時の電荷分解能の誤差は、誤差の伝播の法則を用いて以下のように算 出できる。

$$\delta_w^2 = \left(\frac{\partial f}{\partial x}\right)^2 \delta_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \delta_y^2$$
$$= \left(\frac{1}{y}\right)^2 \delta_x^2 + \left(-\frac{x}{y^2}\right)^2 \delta_y^2 \tag{3.3}$$

$$\delta_w = \sqrt{\left(\frac{1}{y}\delta_x\right)^2 + \left(-\frac{x}{y^2}\delta_y\right)^2} \tag{3.4}$$

また、今回 mean は1光電子を増倍させて得られた光電子の電荷になっている。そのため、ゲインと mean の関係は以下の式になる。

ゲイン =
$$\frac{\text{mean (pC)}}{1.602 \times 10^{-7} (pC)}$$
(3.5)

印加電圧を変えてそれぞれヒストグラムを作成・フィッティングをし、平均、標準偏差、 電荷分解能を算出し、印加電圧による特性を評価した。

3.2.2.2 測定結果

1光電子のオシロスコープの画面を実際にかかっている加速印加電圧ごとに測定し図 3.13 に示す。

 $6563 \mathrm{V}$

 $11340~\mathrm{V}$

 $11902~\mathrm{V}$

図 3.13 HPD 加速印加電圧ごとのオシロスコープの画面

これをみると、全体の供給電圧を増大させると、振幅も大きくなっていくことがわかる。 次に、ヒストグラムを作成し、1 光電子についてガウシアンフィッティングをした図を 図 3.14 に示す。

フィッティングした際の、平均 mean と標準偏差 sigma と算出した電荷分解能を以下の表 3.3 に示す。

コントロ ール電圧 (V)	光電面供 給電圧 (V)	mean (pC)	mean 誤差 (pC)	sigma (pC)	sigma 誤差 (pC)	分解能	分解能 誤差
2.2	6282	3.0	0.1	1.3	0.1	0.45	0.04
2.3	6563	3.34	0.08	1.17	0.06	0.35	0.02
2.5	7125	3.7	0.1	1.2	0.1	0.32	0.03
2.8	7968	4.74	0.04	1.09	0.03	0.230	0.007
3.0	8530	5.04	0.03	1.17	0.03	0.233	0.006
3.5	9935	6.83	0.03	1.24	0.03	0.182	0.004
4.0	11340	8.60	0.03	1.30	0.03	0.151	0.003
4.2	11902	9.97	0.03	1.45	0.03	0.146	0.003

表 3.3 HPD 測定 ガウシアンフィッティングの結果と分解能

横軸を印加電圧、縦軸をそれぞれ平均 mean、標準偏差 sigma、電荷分解能にしたとき のグラフを図 3.15、図 3.16、図 3.17 に示す。

図 3.15 HPD 加速印加電圧と mean

図 3.16 HPD 加速印加電圧と sigma

図 3.17 HPD 加速印加電圧と分解能

これをみると、印加電圧が大きくなるほど mean は増加していき、sigma は最初の3点 を除き増加していく。また、電荷分解能においては、印加電圧に増加に対して値が減少 し、分解能の精度は高まっていることがわかる。

3.2.2.3 考察

図 3.12 をみると、初めの 3 点は 1 光電子のピー信号の電荷ピークがあまり現れていな い。そのためこの 3 点における mean と sigma の値は精度がよくないと仮定し、初めの 3 点を除いて考察していく。結果のグラフより、印加電圧が大きくなるほど mean と sigma は増加していくことから、式 (3.5) より印加電圧が大きくなるほど、ゲインも増加して いることがわかる。また分解能の値が小さくなり、1 光電子の電荷分解能も向上している ことがわかる。印加電圧におけるゲインの関係を図示し、フィッティングを行ったものを 図 3.18 に示す。これをみると、印加電圧に対してゲインが線形的に増加していることが 読み取れる。

図 3.18 HPD 加速印加電圧とゲイン

これは、ゲインの式から考えることができる。2.3.1 節で説明したように、HPD のゲインは、電子打ち込みゲイン *G_b* とアバランシェ・ゲイン *G_t* の積で表される。電子打ち込み ゲインについて、今回 AD 逆バイアス電圧は固定していたため、スレッシュホールド電圧 は固定されており、加速印加電圧である *V_{pC}* のみを動かした。そのため、式 (2.2) より、 電子打ち込みゲインは、HV の増加の依存することがわかる。式 (2.3) において、本実験 ではアバランシェ・ゲインも固定であるため、ゲインは加速印加電圧である HV のみに依 存する。そのため、HV に対してゲイン、つまり meacn の測定値が線形で近似できたこと は、理論的に正しいといえる。また今回のフィッティングの傾きは (2.3±0.1) × 10⁷ とな り、印加電圧に対してゲインの増加の割合が高いことが読み取れた。

次に正規分布の性質から、今回のフィッティングについて考えていく。まず、二項分布 について考える。N回の施行の中でn回が成功する場合、1回あたりの成功確率をpとす ると、n回成功する確率は

$$P(N, n, p) = {}_{N}C_{n}p^{n}(1-p)^{N-n}$$
(3.6)

となる。ここで試行回数の期待値は、

$$E[X] = \sum_{n=0}^{N} nP(N, n, p)$$
(3.7)

$$= Np = \mu \tag{3.8}$$

となり、これは平均 (mean) *µ* と同義である。また、分散は

$$V[X] = Np(1-p)$$
(3.9)

のようにあらわさ、標準偏差σは

$$\sqrt{V[X]} = \sqrt{Np(1-p)} = \sigma \tag{3.10}$$

となる。以上が二項分布の時の平均と標準偏差になる。ここで、正規分布で考えるため N ≫ 1,n ≫ 1として計算すると、正規分布の時の平均と標準偏差について以下が成り 立つ。

$$E[X] = Np = \mu \tag{3.11}$$

$$V[X] = Np = \mu \tag{3.12}$$

$$\sqrt{V[X]} = \sqrt{Np} = \sqrt{\mu} = \sigma \tag{3.13}$$

よって、正規分布を仮定したガウシアンフィッティングにおいては

$$\mu = \sigma^2 \tag{3.14}$$

が成り立つことがいえる。また、ガウシアンフィッティングを行う際の確率密度関数は

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
(3.15)

であった。今回ガウシアンフィッティングした平均と標準偏差は統計数でなく電荷になっている。そのため、式 (3.14) よりにおいて定数倍が作用すると考え、

$$sigma = a \times \sqrt{mean} \tag{3.16}$$

となるような定数倍 a の値を探しフィッティングを行うと図 3.19 になった。

図 3.19 HPD mean と sigma とフィッティング

これをみると、式 (3.16) に対して、

$$a = 0.47 \pm 0.01 \, (\text{pC})^{1/2}$$
 (3.17)

が定数 *a* の値として適切であると分かった。また、今回分解能は、式 (2.11) で表された。 ここに式 (3.16) を代入すると、電荷分解能は以下の式で表されると考えられる。

よって、mean と分解能の関係についても、定数倍を用いて

分解能 =
$$a \times \frac{1}{\sqrt{\text{mean}}}$$
 (3.18)

となることがわかった。ここで、meanと分解能の図を図示すると図 3.20 となり、

図 3.20 HPD mean と分解能とフィッティング

これをみると、式 (3.18) に対して、

$$a = 0.48 \pm 0.01 \, (\text{pC})^{1/2}$$
 (3.19)

が定数 *a* として適切であるとわかった。式 (3.17)、式 (3.19) から理論的に正しいことが検 証された。

3.3 PMT の分解能測定

3.3.1 セットアップ

暗箱内に以下の図 3.21 のように PMT を設置し、光源は PMT 側面に図 3.22 のように 張り付け、1 光電子光量を入射した。

図 3.21 暗箱内 PMT

図 3.22 PMT 光源配置図

暗箱にはケーブルが通るように穴をあけ、全体を暗幕で覆った。今回は、第1ダイノー ドにかかる電圧と第2ダイノードから最終ダイノードにかかる電圧で異なる印加電圧を かけられるように回路を製作した。このときの回路を図 3.23、製作した装置を図 3.24 に 示す。

図 3.23 PMT 供給電圧回路図

図 3.24 PMT 供給電圧装置

電源電圧を用いて印加電圧を変えていき、出力をオシロスコープに繋いで波形をプログ ラムを用いて取得して解析を行った。オシロスコープは、チャンネル1に PMT の出力を 繋ぎ、チャンネル2に光源をつないだ。全体のセットアップについては、図 3.25 に、実 際の装置のセットアップを図 3.26 に示す。

図 3.25 PMT セットアップ図

図 3.26 実際の PMT セットアップ

3.3.1.1 光電子増倍管

今回使用した光電子増倍管は、図に示すように浜松ホトニクス株式会社製 PMT のR 12860を使用した。使用した型番は EA0047 であった。これは 50 cm 口径の PMT で、種 類はヘッドオン型、受光面形状は円形、感度波長は 300~650 nm、光電面の種類はバイア ルカリで窓材質は硼硅酸ガラス、ダイノードの構造はボックスライン型でダイノードの段 数が 10 段のものであった。この外形寸法図に関しては図 3.27 に示す。

図 3.27 使用した PMT の外寸 [14]

供給電圧とゲインの関係は図 3.28 のようになっており、これをみると供給電圧は 1000 Vから 2500 Vまでかけることができるとわかる。10⁷ ゲインを得るための供給電圧は 1700 Vとされており、今回はこれを基準として考え実験を行った。

図 3.28 使用した PMT の供給電圧とゲインの関係 [14]

PMT 内のダイノードは図 3.29 の回路に繋がっている。

図 3.29 使用した PMT の回路図 [14]

この回路図 3.23 の回路を接続し、抵抗 R1 から R4 までにかかる印加電圧と R4 から R17 までにかかる印加電圧をそれぞれ変えることができる設計とした。R4 の抵抗値が相対的 に小さいことを考慮して、前者を第 1 ダイノードまでの電圧、後者を第 1 ダイノード以 降の電圧として実験を行った。R1 から R4 までの直列な抵抗の総計は 2522 kΩ、R5 から R17 までの直列な抵抗の総計は 3379 kΩ であった。ここから、全体の供給電圧が 1700 V のときには、入力から第 1 ダイノードまでにかかっている電圧は約 727 V であり、第 1 ダ イノードから出力までにかかっている電圧は約 973 Vと換算できる。

3.3.2 第1ダイノードのみ印加電圧を動かした場合の分解能測定

3.3.2.1 測定方法

全体の供給電圧が1700 Vのとき、つまり入力から第1ダイノードまでにかかっている 電圧が727 V、第1ダイノードから出力までにかかっている電圧が973 Vのときを基準と した。第2ダイノード以降にかかる電圧は973 Vから変えず、第1ダイノードにかかる電 圧のみを26 Vから1526 Vまで動かしていき、全体の供給電圧を1000 Vから2500 Vま で変えて、オシロスコープで1光電子を確認した。全体の電圧が1700 Vのときのオシロ スコープの画面図 3.30 のように、横軸は20 ns/div、縦軸はチャンネル1が500 mV/div、 チャンネル2 が10 mV/div であった。3.2.2.1 節と同様に測定と解析を行った。

図 3.30 印加電圧 1700 V のときの PMT のオシロスコープ

3.3.2.2 測定結果

第1ダイノードのかかる電圧が26 V、126 V、226 V、つまり全体の供給電圧が1000 V、1100 V、1200 V のときは1光電子がオシロスコープで確認されなかった。そのため、 1300 V から2500 V までを測定・解析した。このときのオシロスコープの画面を図 3.32 に示す。

1500 V (第1ダイノード 526 V)

1700 V (第1ダイノード 726 V)

1800 V (第1ダイノード 826 V)

1900 V (第1ダイノード 926 V)

2000 V (第1ダイノード 1026 V)

2500 V (第1ダイノード 2526 V)

図 3.32 PMT 第1ダイノード印加電圧のみ変化させた測定のオシロスコープ

これを見ると、印加電圧が増加するほど、振幅が増大していることがわかる。

ヒストグラムを作成し、1 光電子についてガウシアンフィッティングをした図 3.34 をに 示す。横軸は電荷 (pC)、縦軸は光電子の数を表している。

2500 (第1ダイノード 1526 V)

図 3.34 PMT 第1ダイノード印加電圧のみ変化させた測定のガウシアンフィッティング

これを見ると、印加電圧が増加するほど、1 光電子が識別しやすくなっていることがわ かる。フィッティングした際の、平均 mean と標準偏差 sigma と算出した電荷分解能を以 下の表 3.4 に示す。

第1ダイ ノード電 圧(V)	全体供給 電圧 (V)	mean (pC)	mean 誤差 (pC)	sigma (pC)	sigma 誤差 (pC)	分解能	分解能 誤差
326	1300	1.0	0.2	0.8	0.4	0.7	0.4
426	1400	1.52	0.03	0.63	0.04	0.41	0.03
526	1500	1.79	0.03	0.71	0.04	0.40	0.02
626	1600	1.89	0.02	0.79	0.02	0.42	0.01
726	1700	2.19	0.02	0.72	0.02	0.327	0.009
826	1800	2.44	0.02	0.72	0.02	0.296	0.007
926	1900	2.63	0.02	0.74	0.02	0.283	0.007
1026	2000	2.85	0.02	0.80	0.03	0.28	0.01
1126	2100	2.96	0.02	0.83	0.03	0.28	0.01
1226	2200	2.97	0.02	0.92	0.02	0.311	0.008
1326	2300	2.96	0.02	0.83	0.03	0.28	0.01
1426	2400	2.90	0.03	0.95	0.04	0.33	0.01
1526	2500	2.88	0.04	1.01	0.05	0.35	0.02

表 3.4 PMT 第1ダイノード印加電圧のみ変化させた測定のガウシアンフィッティング 結果

横軸を印加電圧、縦軸をそれぞれ平均 mean、標準偏差 sigma、電荷分解能にしたとき のグラフを図 3.35、図 3.36、図 3.37 に示す。

図 3.35 PMT 第1ダイノード印加電圧のみ変化させた測定の印加電圧と mean

図 3.36 PMT 第1ダイノード印加電圧のみ変化させた測定の印加電圧と sigma

図 3.37 PMT 第1ダイノード印加電圧のみ変化させた測定の 印加電圧と分解能

これをみると、印加電圧が大きくなるほど、mean と sigma は増加していくが、mean は 2100 V のあたりから 3 pC で打ち止めになっていることがわかる。一方、電荷分解能は印 加電圧が大きくなるほど値が小さくなり、分解能の精度が向上していることがわかる。し かし、mean が打ち止めになった 2100 V 以降は分解能が悪くなっていることがわかる。

3.3.2.3 考察

印加電圧の増加に対し mean が増加していることから、式 (3.5) より印加電圧の増大する ほどゲイン増加していることがわかる。また分解能の値が小さくなり、1 光電子の電荷分 解能も向上していることがわかる。印加電圧におけるゲインの関係を図示し、フィッティ ングを行ったものを図 3.38 に示す。これを見ると、第1ダイノードの印加電圧が 1100 V 付近でサチュレーションが起きていたことがわかる。

図 3.38 PMT 第1ダイノード印加電圧のみ変化させた測定の印加電圧とゲイン

ゲインの式 (2.8) から考えると、印加電圧に対してゲインが *E^k* 乗に増加しているはず である。ここで *E* は第1ダイノード間の印加電圧である。今回の結果を *E^k* 乗でフィット すると以下の式 (3.20) になり、精度よくフィッティングができ理論に対して正しかったこ とがわかった。

$$gain = (1.0 \pm 0.2) \times 10^5 \times E^{0.75 \pm 0.03}$$
(3.20)

また、3.2.2.3 節と同様にガウシアンフィッティングを行ったため、mean と sigma の関係性、mean と分解能の関係性についても考察する。この時のフィッティングを行った図をそれぞれ以下に示す。

図 3.39 PMT 第1ダイノード印加電圧のみ変化させた測定の mean と sigma のフィッティング

図 3.40 PMT 第1ダイノード印加電圧のみ変化させた測定の mean と分解能のフィッティ ング

図 3.39 から mean と sigma においてフィッティングの定数として

$$a = 0.49 \pm 0.02 \; (pC)^{1/2}$$
 (3.21)

が適切であることがわかり、一方図 3.48 のフィットから、

$$a = 0.50 \pm 0.02 \; (pC)^{1/2}$$
 (3.22)

が適切な定数として存在することがわかり、理論に対して適切であったと考えられる。

3.3.3 第1ダイノードと第2ダイノード以降の印加電圧比が固定で全体 の供給電圧を動かした分解能測定

3.3.3.1 測定方法

第1ダイノードの印加電圧のみ変化させた測定で、ゲインが10⁷になる1700 Vの全体 供給電圧を基準にした。これと同様に全体の供給電圧が1700 Vのとき、つまり第1ダイ ノードまでにかかっている電圧が727 V、第1ダイノード以降にかかっている電圧が973 Vのときを基準とした。この第1ダイノードと第2ダイノード以降にかかる電圧の比率が 727:973 に保たれるように算出・調整し、双方の電圧値を動かして、全体の供給電圧を 1000 Vから2500 Vまで100 Vずつ動かしていった。このとき、それぞれにかけた電圧を 表 3.5 に示す。

全体の	第一ダイノードの	第二ダイノード以降
供給電圧 (V)	印加電圧 (V)	の印加電圧 (V)
1000	427	573
1100	470	630
1200	512	688
1300	555	745
1400	598	802
1500	641	859
1600	683	917
1700	726	974
1800	769	1031
1900	811	1089
2000	854	1146
2100	897	1203
2200	940	1260
2300	982	1318
2400	1025	1375
2500	1068	1432

表 3.5 全体の供給電圧を変化させた測定の実際の印加電圧

オシロスコープの設定は、3.3.2.1 節と縦軸、横軸、トリガーを同じ値に設定したが、全体の供給電圧が 2000 V を超えると、オシロスコープの画面から振幅がはみ出てしまった。 そのため、2000 V 以降はチャンネル 1 の縦軸を 10 mV/div に設定した。その後の測定と 解析については、3.2.2.1 節、3.3.2.1 節と同様に行った。

3.3.3.2 測定結果

全体の供給電圧が1000 V、1100 V、1200 V、1300 V のときは1 光電子がオシロスコー プで確認されなかった。また、2400 V以降は波形の振幅が非常に大きくなってしまった。 そのため、1400 V から 2300 V までを測定・解析した。このときのオシロスコープの画面 を図 3.41 に示す。ただし、横軸は電荷 (pC)、縦軸は光電子数を表している。

1500 V

 $1600~{\rm V}$

 $1700~\mathrm{V}$

1900 V

 $2200~\mathrm{V}$

2300 V

図 3.41 PMT 全体の供給電圧を変化させた測定のオシロスコープ 50

これをみると、3.3.2.2 節の実験結果と同様に、全体の供給電圧を増大させると、振幅 も大きくなっていくが、その増大する割合は、3.3.2.2 節の実験結果での増大の割合と比 べて非常に大きくなった。

次にヒストグラムを作成し、1 光電子についてガウシアンフィッティングをした図を 図 3.42 に示す。

図 3.42 PMT 全体の供給電圧を変化させた測定のガウシアンフィッティング

これを見ると、印加電圧が増加するほど1光電子が識別しやすくなっていることがわ

かる。

フィッティングした際の、平均 mean と標準偏差 sigma と算出した電荷分解能を以下の表 3.6 に示す。

全体供給	mean	mean	sigma	sigma	八 427 台比	分解能
電圧 (V)	(pC)	誤差 (pC)	(pC)	誤差 (pC)	701月年月12	誤差
1400	0.62	0.01	0.20	0.03	0.33	0.05
1500	0.93	0.01	0.31	0.02	0.34	0.02
1600	1.43	0.02	0.41	0.02	0.29	0.01
1700	2.07	0.02	0.63	0.03	0.30	0.01
1800	2.92	0.04	0.99	0.05	0.34	0.02
1900	4.33	0.04	1.25	0.05	0.29	0.01
2000	5.90	0.07	1.73	0.06	0.29	0.01
2100	8.1	0.1	2.2	0.2	0.27	0.02
2200	10.7	0.2	3.4	0.2	0.32	0.02
2300	13.8	0.2	4.1	0.3	0.30	0.02

表 3.6 PMT 全体の供給電圧を変化させた測定のガウシアンフィッティングの結果

横軸を印加電圧、縦軸をそれぞれ平均 mean、標準偏差 sigma、電荷分解能にしたとき のグラフを図 3.43、図 3.44 図 3.45 に示す。

図 3.43 PMT 全体の供給電圧を変化させた測定の印加電圧と mean

図 3.44 PMT 全体の供給電圧を変化させた測定の印加電圧と sigma

図 3.45 PMT 全体の供給電圧を変化させた測定の印加電圧と分解能

これをみると、印加電圧が大きくなるほど、mean と sigma は増加していく。また、電荷分解能においては、印加電圧に増加に対して値が減少し、分解能の精度は高まっているが、分解能の精度の向上の割合は 3.3.2 節に比べると非常に小さく、ばらつきも大きいことがみてとれる。

3.3.3.3 考察

印加電圧の増加に対し mean が増加していることから、式 (3.5) より印加電圧の増大する ほどゲイン増加していることがわかる。また分解能の値が小さくなり、1 光電子の電荷分 解能も向上していることがわかる。印加電圧におけるゲインの関係を図示し、フィッティ ングを行ったものを図 3.18 に示す。

図 3.46 PMT 全体の供給電圧を変化させた測定の印加電圧とゲイン

これをみると、印加電圧に対してゲインが累乗的に増加していることが読み取れる。こ れは、ゲインの式 (3.5)から考えることができる。印加電圧が大きくなるほど、meanと sigma は増加していくことから、印加電圧が大きくなると、ゲインが増加し、1 光電子の エネルギーの識別能力も向上していることがわかる。ゲインの増加の割合が、3.3.2節の 実験に比べて大きいことは、ゲインの式 (2.8)を用いて説明ができる。3.3.2節の実験にお いては第1ダイノードのみ印加電圧を増大したため、収集効率αと第1ダイノードの2次 電子放出比のみしか増大しなかったが、今回の実験では収集効率αと第1ダイノードの2 次電子放出比のみでなく、第2ダイノードから最終ダイノードまでの電子放出比も増倍し ており、その積がゲインになっていることが要因としてあげられる。meanと sigmaの増 加が指数関数的な増加を示したことについては、式 (2.10)から説明できる。フィットの図 から、今回ゲインは供給電圧の6.3±0.05乗に比例することがわかった。本実験で使用し た PMT は 10 段階のダイノードであったので式 (2.10)において、n = 10 より

$$k = 0.63 \pm 0.05 \tag{3.23}$$

であったことがわかった。

また、3.2.2.3 節と同様にガウシアンフィッティングを行ったため、mean と sigma の関 係性、mean と分解能の関係性についても考察する。この時のフィッティングを行った図を それぞれ図 3.48、図 3.48 に示すと、今回フィッティングの精度がよくないことがわかる。

図 3.47 PMT 全体の供給電圧を変化させた測定の mean と sigma のフィッティング

図 3.48 PMT 全体の供給電圧を変化させた測定の mean と分解能のフィッティング

式 (3.16) をもとに定数倍で考えた時、mean と sigma、mean と分解能の関係性が適切に 表せなかった要因について考えていく。3.3.2 節の実験では、mean と sigma、mean と分 解能の関係性は式 (3.16) で説明することができた。そのため、本実験での測定において も、ゲインが第1ダイノードの印加電圧のみに依存すると考えた。この時、第1ダイノー ドのゲインに相当する mean について算出した。

式 (2.8)、式 (2.10)、式 (2.9) を用いると、今回ダイノードの段数が 10 段であるため n = 10 とすると、ゲイン μ において、

$$\mu = \alpha \cdot \delta_1 \cdot \delta_2 \cdots \delta_{10}$$
$$= (\alpha E^k)^{10} = AV^{10k} \quad (\because V = 11E)$$
(3.24)

が成り立っている。簡単のため、 $\alpha = 1, a = 1$ として第1ダイノード以降の電圧が等分配 されていると考えると、

$$\frac{\delta_1}{\mu} = \frac{1}{\delta_2 \cdot \delta_3 \cdots \delta_{10}}
= \frac{1}{\left(\frac{974}{1700} \cdot V \cdot \frac{1}{10}\right)^{9k}}
= \frac{1}{\left(\frac{974V}{17000}\right)^{9k}}$$
(3.25)

となり、全体の mean に $\frac{\delta_1}{\mu}$ をかけることで、第1ダイノードに相当する mean が求まるため、

第1ダイノードの mean = 全体の mean ×
$$\frac{\delta_1}{\mu}$$

= 全体の mean × $\frac{1}{\left(\frac{974V}{17000}\right)^{9k}}$ (3.26)

となることがわかる。mean と sigma の双方に式 (3.26)を適応して、再度式 (3.16)に基づ くフィッティングを行った。この時の図を図 3.49、図 3.50 に示す。

図 3.49 PMT 全体の供給電圧を変化させた測定の第1ダイノードにおける mean と sigma のフィッティング

図 3.50 PMT 全体の供給電圧を変化させた測定の第1ダイノードにおける mean と分解能 のフィッティング

この時、図 3.49 からは

$$a = (1.03 \pm 0.02) \times 10^6 \ (pC)^{1/2}$$
 (3.27)

と求まり、図 3.50 からは、

$$a = (1.02 \pm 0.02) \times 10^6 \ (pC)^{1/2}$$
 (3.28)

となることがわかり、今回の測定とフィッティングが適切であったことがわかった。

ここから、PMT の電荷分解能の印加電圧特性は、全体の供給電圧でなく第1ダイノー ドでの印加電圧に依存していることがわかった。

第4章 結論と今後の展望

本研究では、ハイパーカミオカンデで使用予定の 50 cm 口径 PMT の電荷分解能を向上 させるために、光検出器の印加電圧の特性を評価した。方法としては、暗箱の中に光検 出器を設置し、光ファイバーで光を入射して、オシロスコープで1光電子の電荷を測定し た。その後電荷分解能を算出し、印加電圧との関係を考察した。HPD は加速印加電圧を 動かす測定を行い、PMT は第1ダイノードのみの印加電圧を動かす測定と第1ダイノー ドと第2ダイノード以降の比を保ったまま全体の印加電圧を動かす測定の2通りの測定を 行った。

本研究において、印加電圧の増加に伴うゲインと分解能の精度の向上が確認された。ま ず HPD において分解能の精度の向上が見られたため、PMT でも同様の精度向上が見ら れるのではないかと考えた。第1ダイノードの印加電圧のみを変化させたところ、1100 V 以降でサチュレーションが起きることがわかった。この後、PMT の全体供給電圧を変化 させる測定をしたところ、ガウシアンによるフィッティングがずれてしまった。そこで第 1ダイノードの印加電圧のみでガウシアンフィッティングを考えたところ、フィットの精 度が向上した。ここから、PMT の分解能の精度向上のためには、第1ダイノードの印加 電圧の依存性が重要であることがわかった。

今後の展望として、第1ダイノードの印加電圧をサチュレーションとならない程度に増加させたまま、第1ダイノード以降の電圧もあげていき、得られるゲインの最大と最も精度の高い分解能の値、そしてその時の第1ダイノードの印加電圧と全体印加電圧を調べれば、PMTの分解能を最大限高められるはずである。

58

謝辞

本研究を行うにあたり多くの方々にお世話になりました。この場をお借りして感謝の意 を述べさせていただきます。

まず、指導教員の西村康宏先生には、測定方法や解析手法、データ取得のプログラム作 成など丁寧に指導していただきました。先行研究やその背景などについても教えていただ き、大変勉強になっただけでなく、素粒子の面白さや実験の楽しさにも気づくことができ ました。お忙しいにも関わらず、丁寧なご指導と多くの助言をくださり心から感謝してい ます。

また、研究室の先輩方にも大変お世話になりました。前川雄音さんは、アンプのなどの 装置の使い方を教えていただいたり、進捗報告の際に私が解決できなかった疑問を丁寧に かつ的確に教えてくださいました。素粒子研究における知見が広く、尊敬しております。 Yu Ming Liu さんには、自身の知らなかった解析手法や研究について教えていただきまし た。岡崎玲大さんには、HPD を使用した際の実験装置について教えていただきました。 岡崎さんがかつて使用していた装置を一部使わせていただき、そのお陰で滞りなく実験を 行うことができました。小林美咲さんには、研究における疑問点だけでなく TeX のプロ グラムや資料作りについてもアドバイスをいただきました。常に説明がわかりやすく、尊 敬しています。堀内昇悟さんは、いつも実験や解析の進捗を気にかけてくださいました。 疑問点や解析法に悩んでいたら相談に乗ってくれ、助言をくださったり一緒に考えてくだ さったりと大変お世話になりました。ありがとうございました。同期の川端篤史君は、一 緒に実験室で作業することが多く、実験器具の使用方法やデータのとり方を教えてくれた りしました。

最後に、これまでお世話になった先生方、私を支えてくれた家族に感謝を申し上げます。

59

参考文献

- [1] 東京大学素粒子物理国際センター.素粒子の発見と標準理論:https://www.icepp.s.u-tokyo.ac.jp/elementaryparticle/standardmodel.html (2023.12.17)
- [2] 秋本祐希 標準模型の素粒子:HIGGSTAN:https//higgstan.com/standerd-model (2023.12.17)
- [3] Particles and Fundamental Interactions.Sylvie Braibant, Giorgio Giacomelli, Maurizio Spurio.978-94-007-2463-1.16 November 2011
- [4] 千葉大学ハドロン宇宙国際センター. ニュートリノとは:http://www.icehap.chibau.jp/neutrinos/index.html(2023.12.28)
- [5] 東京大学宇宙線研究所付属神岡宇宙素粒子研究施設.検出器について.スーパーカミオカ ンデ. https://www-sk.icrr.u-tokyo.ac.jp/sk/about/detector/ :https://www-sk.icrr.utokyo.ac.jp/hk/about/research/ (2023.12.29)
- [6] 東京大学宇宙線研究所付属神岡宇宙素粒子研究施設. 検出器について. ハイパーカミ オカンデ:https://www-sk.icrr.u-tokyo.ac.jp/hk/about/detector/ (2023.12.29)
- [7] 石河寛昭 チェレンコフ光および /alpha 線の測定 RADIOISOTOPES, Vol.24, No.
 10, pp. 72-77, Oct. 1975
- [8] 江上典文. 光電変換の基礎. 映像情報メディア学会誌,2014,68.1: 63-67.
- [9] 浜松ホトニクス株式会社編集委員会 光電子増倍管-その基礎と応用-第4版 浜 松 https://www.overleaf.com/project/658fca96836accf9cbf48bccホトニクス株式会社 2017 (2023.12.15)
- [10] FUKUDA,S,et al.The super-kamiokande detector.Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 501.2-3:418-462
- [11] Hyper-Kamiokande Proto-Collaboration, K. Abe et al. Hyper-Kamiokande Design Report.Nov.2018

- [12] 西村康宏 ハイパーカミオカンデ大口径光検出器の開発 高エネルギー物理学研究者会 議 研究紹介 2021
- [13] 浜松ホトニクス株式会社 8inch HPD Analog Module (EHD0098,0099,0102,0104) 仕 様及び、データ 30 Jun. 2014
- [14] 浜松ホトニクス株式会社 R12860HQE 精密測定結果 (6 pcs) EA0037, EA0045, EA0046, EA0047, EA0052, EA005