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Executive summary

French. Pour conclure ma première année de Master en Physique des Hautes Energies, j’ai in-
tégré la collaboration Hyper-Kamiokande dans le cadre d’un stage de quatre mois au Japon. Dé-
couverte du monde de la physique des particules expérimentale, cette expérience m’a permis tant
de comprendre l’organisation à grande échelle d’une collaboration comme Hyper-Kamiokande que
d’assimiler des compétences dans de multiples tâches spécifiques. Tout d’abord, j’ai été initié
aux enjeux matériels concernant les photo-détecteurs en allant moi-même en installer à Kamioka
sur le site du détecteur et en analysant le signal ainsi récolté. Une étude du bruit généré à
l’intérieur de ces appareils m’a permis de mettre en évidence et de comprendre des anomalies
dans les mesures, qui menaçaient alors la production de masse pour la construction du détecteur.
Qui plus est, un travail plus approfondi sur la dépendance en température du comportement de
ces photo-détecteurs m’a permis d’établir un modèle utilisable en pratique, et que j’ai présenté
au meeting international de la collaboration Hyper-Kamiokande. En parallèle, j’ai également été
chargé d’explorer des techniques d’analyse de données pour du neutron tagging à basse énergie
en utilisant de l’apprentissage automatique (machine learning). Ce travail s’est révélé moins
fructueux que les précédents, en raison de nombreux problèmes techniques inattendus. Cela m’a
amené à réorienter le projet pour en modifier l’objectif, permettant ainsi d’établir des bases pour
de futures études sur le sujet en résolvant une partie des problèmes auxquels j’ai été confronté.
Grâce à ce stage, je pense ainsi disposer d’une partie des clés nécessaires pour effectuer les choix
qui s’imposeront dans la suite de ma carrière en recherche, notamment en ce qui concerne le
doctorat.

English. To conclude my first year of a Master’s program in High Energy Physics, I joined the
Hyper-Kamiokande collaboration for a four-month internship in Japan. This experience intro-
duced me to the world of experimental particle physics, allowing me to both grasp the intricacies
of large-scale collaborations like Hyper-Kamiokande and acquire skills in various specific tasks.
Firstly, I was introduced to the hardware challenges related to photo-sensors by personally in-
stalling them at the Kamioka detector site and analyzing the collected signals. An investigation
into the noise generated within these devices enabled me to identify and comprehend anomalies in
the measurements, which posed a threat to the mass production for the detector’s construction.
Furthermore, a more in-depth exploration of the temperature dependence of these photo-sensors’
behavior led me to establish a practically usable model, which I presented at the international
meeting of the Hyper-Kamiokande collaboration. In parallel, I was also tasked with exploring
data analysis techniques for low-energy neutron tagging using machine learning. This endeavor
proved to be less fruitful than the previous ones, due to numerous unexpected technical chal-
lenges. This prompted me to reshape the project and adjust its objectives, thereby laying the
groundwork for future studies on the subject by addressing some of the issues I encountered.
Thanks to this internship, I believe I now possess some of the essential tools to make informed
decisions as I progress in my research career, particularly with regard to pursuing a PhD.
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Introduction

As an essential part of my master studies in High Energy Physics, this four months internship
in Japan was the opportunity to discover the experimental world in particle physics, by being
deeply immersed into one of its major experiments: the neutrino observatory (currently under
construction) Hyper-Kamiokande. While my initial aspirations did not lean toward hardware
aspects of an experiment, I recognized the importance of gaining hands-on experience with the
organization and operation of a large-scale international collaboration in particle physics. Con-
sequently, I chose to work with Prof. Yasuhiro Nishimura at Keio University, a prominent figure
in the Hyper-Kamiokande project. Additionally, having previously undertaken a project related
to neutrino physics, I possessed a solid foundation in the theoretical context and experimental
objectives of the field, enabling me to concentrate on more technical aspects.

During my time at Keio University, I undertook several projects as part of the Hyper-Kamiokande
experiment, guided by Nishimura-san. One project centered on investigating the noise charac-
teristics of Photo-Multiplier Tubes (PMTs), integral to the neutrino detector, enhancing my
understanding of PMT hardware and associated practical challenges. Simultaneously, a data
analysis project employing machine learning techniques allowed me to get used to the handling
of Hyper-Kamiokande data at low energy. Concurrently, these two projects followed distinct
paths. While the second one encountered challenges due to tool malfunctions and accreditation
issues, leading me to adapt the objectives of the project, my research on PMT noise progressed
smoothly and yielded valuable results that held significant implications for the collaboration,
especially regarding PMT mass production. Additionally, I had the opportunity to enhance my
understanding of the detector by visiting the Kamioka site, where I observed the electronics
of Super-Kamiokande and participated in the installation of one hundred new PMTs, gaining
valuable hands-on experience.

Furthermore, I sought to engage with experts across high-energy physics disciplines, and I
achieved this by attending international meetings and conferences. Specifically, I reached out to
Prof. Michel Gonin of the ILANCE laboratory, organizer of the ’International Conference on
the Physics of the Two Infinities’ in Kyoto during my internship’s initial week. With generous
support from ILANCE, I gained valuable insights into the latest developments in high-energy
physics. Furthermore, as part of my ongoing efforts to integrate into the collaboration, I aimed
to participate in the concluding Hyper-Kamiokande international collaboration meeting in July.
To achieve this, I continued my research on PMT noise, securing unprecedented results regarding
the temperature dependency of PMT behavior. This accomplishment allowed me to present my
work at the collaboration meeting, marking a significant milestone in my internship.

In summary, my internship experience was not limited to a single project over the four months.
Instead, I seized the opportunity to engage in conferences and meetings, work closely with the
detector, and explore various facets of the collaboration. Consequently, although not all aspects
naturally lend themselves to presentation in this report, the following chapters aim to present
the conduct and outcomes of my projects throughout this internship.
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Chapter 1

The Hyper-Kamiokande Project

This section aims to present the Hyper-Kamiokande project and its main stakes to non special-
ist readers. We will first present the main concept of Water Cherenkov Detector (WCD), which
designates a category of detectors sharing the same global goals and methods. Then, we will
describe the main physical phenomena implied in neutrino detection with this detector, that is,
their different interactions with matter, and the Cherenkov Effect which allows good detection
and reconstruction of incoming neutrinos. Finally, we will introduce the Photo-Multiplier Tubes
(PMT) operating mode, which produce the raw signal of the detector.

1.1 Water Cherenkov Detectors (WCD)

A Water Cherenkov Detector (WCD) consists in a huge tank filled with pure water (and
eventually a small proportion of additional components, e.g. Gadolinium), whose inner surface
is covered with photo-sensors, that is, captors that can detect light with the precision of single
photons. Such architecture allows some interactions or decays to happen in the water tank, and
to be detected by the photo-sensors through their products.

Different architectures can exist for the tank, such as cylinders (e.g. Kamiokande, Super-
Kamiokande, Hyper-Kamiokande), spheres (e.g. JUNO) or cubes (e.g. DUNE), see Figure 1.1.
There are also different concepts, where the photo-sensors form a network inside the medium.
Famous examples of such architectures are IceCube (in ice) and KM3NeT (in the sea), see Figure
1.2.

Figure 1.1: Photos inside the tank of Super-Kamiokande (left), JUNO (middle) and DUNE
(right).

WCDs are particularly useful for detecting rare events, as the probability of observing these
events is proportional to the volume of the tank. Therefore, the volume of the new WCDs tends
to be larger and larger. Super-Kamiokande, which started operations in 1996, has a volume of
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Figure 1.2: Schematic representations of IceCube (left) and KM3NeT (right).

50 millions cubic meters, and its successor under construction, Hyper-Kamiokande, will have a
volume 20 times larger, of about 1 billion cubic meters.

The main particles these detectors are designed for are neutrinos, as these particles interact
extremely few with matter, and are almost impossible to detect without a huge volume of matter.
Furthermore, a huge interest in neutrinos has emerged in the last decades, with the discovery of
neutrino oscillations (see Section 1.2.2). But other events are also searched in WCDs, such as
proton decay (the initial goal of Kamiokande), an hypothetical event that would highlight new
physics Beyond Standard Model.

1.2 Motivations of neutrino studies

In order to understand the interest in neutrino studies, some explanations are needed. We will
mainly focus on two aspects of neutrino studies, which are supernova detection, and oscillation
measurements.

1.2.1 Supernova detection

In simple terms, a supernova is a dying star explosion. In that process, a huge amount of
photons is emitted, which allows optical detectors looking at the supernova to detect it and learn
some information about the extreme processes happening during the explosion.

However, light is not the unique product of a supernova, and in particular, a huge amount
of neutrinos is also emitted. Furthermore, because neutrinos interact much less with matter
than photons, they are able to escape the supernova before them. Therefore, detecting these
neutrinos, in addition to providing information about the supernova itself, can be used as a
warning to orient the instruments in the right direction in order to observe the photons that will
arrive later.

Unfortunately, this method can be used only for supernova happening close enough to us. So
far, the only supernova that has been detected that way is SN 1987A, which was detected in
1987 at a distance of 168 000 light years from us.

1.2.2 Neutrino oscillations

A more recent discovery in the neutrino sector is the evidence of neutrino oscillations in 1998,
which granted the Nobel prize to Takaaki Kajita and Arthur McDonald in 2015. This discovery
has a very important impact in our understanding of neutrinos, as it proves that neutrinos have
masses.
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More precisely, in order to understand neutrino oscillations, one must know that neutrinos come
in three different flavours : electronic neutrinos νe, muonic neutrinos νµ and tauic neutrinos ντ .
These states of the neutrinos characterize which particles they can interact with (respectively
electrons e−, muons µ− and tauons τ−).

However, it was observed that when they propagate into space, neutrino flavours can change: a
neutrino can oscillate between these different flavours. This can be explained by two new elements
in the model: firstly, neutrinos need to have masses, and secondly, the mass (propagation) states
are different than the flavour (interaction) states.

Let’s introduce three mass states ν1, ν2 and ν3, associated to three well-defined masses m1,
m2 and m3. The flavour states are then expressed as linear combinations of the mass states:νe

νµ
ντ

 = UPMNS

ν1
ν2
ν3


The unitary matrix describing this transformation is called the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix. Thanks to the unitarity of this matrix, its 9 complex parameters can
be reduced to 9 real parameters. Furthermore, given the global phases of the leptonic fields are
not observable, 5 of these parameters can also be absorbed in these phases. Therefore, only 4
free real parameters remain, and the PMNS matrix is usually parameterized the following way:

UPMNS =

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

 cos θ13 0 sin θ13 e
−iδCP

0 1 0
− sin θ13 e

iδCP 0 cos θ13

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


The three angles θ12, θ13 and θ23 are called the mixing angles, and they are related to the

amplitudes of the different oscillation modes (whose frequencies are controlled by the squared
mass differences ∆m2

ij), as seen in Figure 1.3. The phase δCP is called the CP violation phase
(in the lepton sector), and is related to the matter/antimatter asymmetry concerning the lepton
interactions.

Figure 1.3: Oscillation probabilities for an initial electronic neutrino, as a function of the distance
traveled L. The black curve stands for electronic neutrino, the blue for muonic neutrino and the
red for tauic neutrino.
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The measurement of all these parameters is another purpose of neutrino experiments. For
example, the T2K experiment consists in throwing neutrinos to a far detector, that is Super-
Kamiokande or Hyper-Kamiokande, in order to determine the parameters related to "low-
frequency" oscillations (i.e. small difference of squared masses). On the other side, the analysis
of solar neutrinos allows to determine the parameters related to "high-frequency" oscillations.

1.3 Neutrino interactions

In order to understand how neutrinos can be detected in a WCD, an explanation of their inter-
actions with matter is needed. Actually, neutrinos are not directly detected in the experiment,
as they do not interact enough to allow it. Instead, we let the neutrinos interact in the water
tank, and the products of this interaction, mainly charged leptons e± and µ±, are detected via
Cherenkov effect (explained in section 1.4).

There are different processes for neutrino interactions in water, that predominate at different
energies. These processes are categorized in the following groups:

• Coherent Scattering: at low energy the neutrino just bounces off the nucleus.

• Quasi-Elastic Scattering (QE): at higher energies, the neutrino might be energetic enough
to penetrate the nucleus and interact with the nucleons. There are two channels, interaction
through charged current (CC) and neutral current (NC).

(CC)

{
νl + p → l+ + n

νl + n → l− + p

(NC) νl + p(n) → νl + p(n)

The nucleon can be promoted to an excited state (∆ of different charges) by resonance
(RES), which will eventually decay into pions. Charged pions can easily be confused with
charged leptons in the detector, and must therefore be treated carefully.

• Deep Inelastic Scattering (DIS): at the highest energies, the neutrino breaks the nucleon
and we end up with a hadronic shower in the final state, as well as a charged lepton.

Figure 1.4 shows the cross section (which is proportional to the probability of the process
happening) of these different processes as function of the energy, for neutrinos and anti-neutrinos.

1.4 Cherenkov effect

Once a charged lepton is produced in the water tank, at the so called interaction vertex, this
lepton will be detectable thanks to the so called Cherenkov effect, or Cherenkov radiation.

This effect can be understood as follows. As the incoming neutrino is highly energetic, it
will transfer almost all its energy to the charged lepton (because it is the significantly lighter
product of the interaction), and therefore this charged lepton will travel at a speed close to the
speed of light (in vacuum) c. However, the actual speed of light in water, cw, is lower than c

(approximately cw ≈ c

1.33
). Therefore, the radiation emitted by the charged lepton during its

propagation in water will be emitted with a certain angle θ with respect to its direction, as shown
in Figure 1.5.
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Figure 1.4: Cross-sections for the interaction of neutrinos and anti-neutrinos with nucleons as a
function of the energy of the incoming neutrino [4].

Figure 1.5: Cherenkov effect [11].

As it radiates, the charged lepton will loose its energy, until it completely slows down. At
this point, the lepton will stop emitting Cherenkov light, and thus the overall emitted light has
the shape of a cone, with a given thickness corresponding to the distance traveled by the lepton
before being stopped. The cone will then be projected on the inner surface of the tank to be
detected by the photo-sensors, forming a ring, called Cherenkov ring.

Examples of Cherenkov rings are represented in Figure 1.6.

1.5 Photo-Multiplier Tubes (PMT)

The final step of the detection process is the captation of Cherenkov light by the photo-sensors
on the inner surface of the tank. One single photo-sensor is shown in Figure 1.7. In order to
detect event with relatively low energy (the best we can do today is around 1MeV ), the photo-
sensors have to be sensitive enough to detect single incoming photons, while the noise have to
be low enough not to hide the signal.

This goal of sensitivity is achieved thanks to photomultiplier tubes, whose operating mode is
described in Figure 1.8. The detection process can be decomposed in multiple steps:
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Figure 1.6: Cherenkov rings in the Super-Kamiokande inner detector. The color represents the
time and the size represents the charge of the hits (c.f. Section 1.5). On the left, the very clean
ring caused by a muon, and on the right, the much fuzzier ring caused by an electron, due to a
more important impact of dispersion for a lighter particle.

Figure 1.7: Photo of a single photo-sensor for Hyper-Kamiokande.

• When a photon arrives at the photo-sensor, it will either be reflected by the glass (in that
case no signal is generated), or penetrate inside the scintillator.

• In the scintillator, it will then ionize a gas to generate scintillation photons that will
eventually hit the photocathode.

• By photoelectric effect, the photocathode will generate so called primary electrons.

• The primary electrons are accelerated by an electric field and will hit the first dynode.

• By secondary emission, more secondary electrons are emmitted by the first dynode, and
will be accelerated by the electric field to hit the second dynode.

• This process continues recursively, so that in the end a large amount of secondary electrons
hit the anode, leading to a measurable charge.

The PMT signal can then be seen as a series of values of voltage over time. However, although
it would be more precise, acquisition of this full signal is impossible, as it would require too much
storage. Instead, a basic analysis is made by the hardware itself in order to digitize and identify
the hits in this signal in real time. Then, only the information of time and charge is conserved
and stored each time a hit is identified.

7



Figure 1.8: Operating process of a photo-multiplier tube.

At the end of this process, the information of time and charge for each hit of each PMT
constitutes the raw data for the detector. One event (for example for an incoming neutrino) is
then characterized by the collection of hits it generates, as we can see in Figure 1.6.
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Chapter 2

PMT Dark Noise measurements and
analysis

This second chapter aims to present the core subject of my research, which is the dark noise
analysis for Hyper-Kamiokande PMTs. During this internship, I had the chance to work on many
different aspects of PMTs, including hardware and installation, analysis of signal and noise of
the PMTs, modelisation and fitting of the noise, and analysis of its dependency in other external
phenomena.

This chapter will be the opportunity to present my experience on PMT hardware and my
contribution in their installation in dark rooms, as an uncommon but essential work for the
Hyper-Kamiokande project. Then, I will present the unexpected result of these measurements,
to the point of threatening the continuation of PMT mass production. This motivated new
measurements and further analysis of PMT dark noise, that I realized, which allowed me to
bring the key arguments to pursue the mass production.

2.1 Introduction on Dark Noise

2.1.1 Definition and origins of dark noise

As presented above (see Section 1.5, the component used in Super-Kamiokande or Hyper-
Kamiokande to acquire the signal is photo-multiplier tubes (PMT). They are designed to detect
light with enough precision to detect single photons as "hits". Therefore, the expected behaviour
of a PMT remaining in a completely dark room is to record no hit at all. However, we observe
that PMTs in dark rooms do generate hits. This remaining "signal" is called dark noise.

As far as we know, dark noise has two main origins: glass scintillation and thermal electrons.
In short terms:

• Glass scintillation describes the fact that the glass surrounding the photo-sensor can even-
tually emit some photons inside the gas without any external cause, that will then hit the
photocathode and generate a signal.

• Thermal electrons are electrons that are present in the tube and will eventually hit the
anode because of nonzero temperature.

These two noises and the methods used to analyse them will be further described in Section
3.3
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2.1.2 Dark rate

The way we commonly use to characterize dark noise is the dark rate, which is the average
frequency of these "fake hits". Of course, it doesn’t encapsulate all the information about dark
noise. For instance, it doesn’t take into account the repartition of hits in time, but this will be
discussed in Section 3.3.

The typical expected value for the dark rate in the last phase of Super-Kamiokande or in
Hyper-Kamiokande is around 4kHz.

2.1.3 Hit detection in the raw PMT signal

In order to understand how this noise is evaluated and analysed, let’s focus quickly on hit
detection in the PMT signal. The raw signal of the PMT consists in a voltage for each time
step. We can then draw a monitoring plot of PMT voltage over time, as shown in Figure 2.1.
The orange curve shows the so called baseline, that is, the noisy flat curve observed when no
hit is recorded. However, when a hit happens, the accumulation of charge in the anode causes a
decrease in the measured voltage, which is characterized as a pic below the baseline, as shown
on the blue curve.

Figure 2.1: Two kinds of photomultiplier signals: baseline (orange) and signal (blue). A hit is
detected as a pic below the baseline.

Then, if we want to count the number of hits in a certain period of time, we can draw an
histogram of the values of that voltage. All the values around the baseline will form a component
named the pedestal, which corresponds by definition to 0 photo-electrons (phe), whereas the
values issued from the hits will form another component at 1 phe. Furthermore, if some pics in
the voltage result from multiple hits happening at the same time, other components will result
at multiple phe. This process is illustrated in Figure 2.2.

Once this histogram is built, we can simply count the number of hits by fitting the different
components [3]. The dark rate can finally be obtained by dividing this number of hits by the
length of the time window. This is the method I use in my study to evaluate the dark rate.
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Figure 2.2: Left: PMT signal acquisition. Upper graph shows no signal, the lower graph
shows a single photoelectron response. The area enclosed by the integration gate represents the
deposited charge used to form the charge spectrum. Right: Qualitative single photoelectron
spectrum splitted into its single components. [3]

2.2 Dark Rate measurements in Kamioka

2.2.1 Installation work

As an essential part of the work in the Hyper-Kamiokande collaboration, two weeks of my
internship were dedicated to hardware work on PMTs in Kamioka, near the actual site of Super-
Kamiokande and the construction site of Hyper-Kamiokande, that I could both visit.

The purpose of my work in Kamioka was to setup a new dark room and install one hundred
PMTs in it, in order to start new measurements of dark rate. These measurements are essential
to verify the well-functioning of the PMTs, in conditions close to the real conditions in Hyper-
Kamiokande. To that extent, the same cabling system and data acquisition methods than in
real conditions are used (see Section 1.5), and the geographic proximity allows to assume same
magnetic field, radiation (without taking into account the shielding that will be applied after).

Some pictures of the installation work I realized are presented in Figure 2.3. This work
essentially includes the following tasks:

• Delivery and storage of the new PMTs in the appropriate building in Kamioka town

• Building the slots on which the PMTs will be laid

• Bringing and setup the appropriate devices for high voltage and data acquisition near the
dark room

• Building the high voltage boxes, that allow the connection of the PMTs to the high voltage
generator

• Setup the cables in the dark room at the right positions, and connect them to the generator
and devices responsible of the data acquisition

• Disposing the 100 PMTs in the dark room, and plugging them to the cables
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Figure 2.3: Installation work in the new dark room in Kamioka.

2.2.2 Measurement results

As specified above (2.1.2), the expected value for the dark rate for Hyper-Kamiokande PMTs
in about 4kHz, a value that is confirmed by the prior measurements made by Hamamatsu just
after PMT construction. However, the analysis of the measurements conducted in Kamioka
(described in 2.2.1) lead to a measured value of the dark rate of around 8kHz, which is far above
what we can afford. Despite many checks, the measurement setup could not be blamed, which
lead to consider this value as correct.

After some investigation, one external element was identified to explain this difference. Indeed,
the radiation level is higher in Kamioka than for the prior measurements in Hamamatsu, which
could explain this difference. If this is indeed the explanation, then the problem is solved, as the
PMT will be shielded against radiation in real conditions. However, nothing allowed to affirm
with certainty that this is the cause, and that the dark rate would be lower in real conditions.
Therefore, it was decided to stop the PMT mass production until this problem is clearly identified,
which is the task that fell to me.

2.3 Dark rate measurements in Kashiwa

2.3.1 New dark rate measurements in Kashiwa

In order to solved the problem exposed above (2.2.2), it was decided to conduct new mea-
surements for a small group of 8 PMTs in Kashiwa (campus of Tokyo University, in the north
of Tokyo). This place was rather convenient for this task, as a darkroom was already present
there, and the radiation level is much lower than in Kamioka, which is the parameter we wanted
to test.

Thus, I went to Kashiwa campus to contribute to receive and install these 8 PMTs in the dark
room, and setup the data acquisition system. Given this dark room was small and not designed
for large scale measurements, the usual data acquisition methods were unthinkable, as they are
too expensive and take too much space. Instead, a full signal acquisition through oscilloscopes
was setup. This method has of course many other flaws, such as storage issues and systematic
errors coming from the difference with the usual setup. But for a small number of PMTs and a
rather short period of time (3 months), storage could be managed, and the precision need was
not high enough to take the systematics into account.

Among the eight chosen PMTs, four of them are from the original design and four of them are
from the improved design, which results from ameliorations made to the PMTs after the beginning
of the production. Furthermore, four of the PMTs (two original and two improved PMTs) are
plugged to one oscilloscope, and the four other ones are plugged to another oscilloscope. These
oscilloscopes are named IPMU oscilloscope and KEIO oscilloscope on the following figures.
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2.3.2 Measurement results

In order to take measurements with the oscilloscopes in Kashiwa from the laboratory in Keio
University (south of Tokyo), a connection had to be established with ssh procedures. A non
negligible amount of work had to be spent on writing scripts to connect and send requests to
the oscilloscopes periodically, and then collect the data and transfer it back to the servers in the
University.

The acquisition was made every hour during the first week, and then twice a day. Each
acquisition consists in full signal acquisition during 1 second. The signal is then treated to
identify the number of hits in the time window (using the method described in Section 2.1.3),
which allows to determine the dark rate. This is done for each of the eight PMTs, and the results
can then be shown in a monitoring plot, see Figure 2.4.

Figure 2.4: Monitoring plot of the dark rate during the first 7 days.

The fact that the 8 PMTs have different dark rates is expected and normal, as it is very diffi-
cult to control this property (as well as other properties such as quantum efficiency, cathode blue
sensitivity, etc.), and the PMTs that present very bad performances after being tested in Hama-
matsu are simply rejected. However, surprisingly, the observed variations in time (approximately
0.5kHz) are much higher than the statistical error, which can be evaluated as follows:

σ =

√
N

T
=

√
r

T
≈ 0.1kHz

where N is the number of hits during the time window, T = 1s is the length of the time wondow,

and r =
N

T
is the dark rate.

This is explained empirically by the presence of noise in the cabling with the oscilloscope,
which biases the analysis of the signal and hence hit count.
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The full results are presented in Figure 2.5. As the average dark rate in Kashiwa is 4.3kHz,
these results are very comforting concerning the performances of the PMTs, and were a key
argument in favor of restarting the mass production of PMTs.

Figure 2.5: Measured dark rate in Kamioka and in Kashiwa for the 8 PMTs. HV is the High
Voltage and Skb is the cathode blue sensitivity - no correlations were found between these
parameters and dark rate.
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Chapter 3

Dark rate dependency on temperature

After conducting a study on dark rate monitoring, which implied the displacement and setup
of 8 PMTs in a different environment than their original one, it appeared that we could benefit
from that to study other phenomena on PMTs. In particular, this environment appeared to
be convenient to regulate temperature, and hence study the influence of temperature on dark
rate. This study appeared to give interesting results, and lead me to make a presentation in
Hyper-Kamiokande international collaboration meeting in June 2023.

3.1 Motivations

Knowing the dark rate dependency on temperature is very useful in order to predict the
performances of the PMTs in real conditions based on their performances in benchmark. Indeed,
as it is explained in Section 3.3, the dark rate varies with temperature. Furthermore, it is made
up of two components which increase at T → 0 and T → +∞, therefore there is a minimum for
a finite temperature. It turns out that this minimum is usually around 14°C, which is precisely
the temperature inside the tank of Hyper-Kamiokande.

However, the law that dictates the dependency on temperature depends on a set of parameters,
that can vary with the type of PMTs and between the different PMTs themselves. Thus, studies
are needed to determine these parameters and infer this law. Once the law is known, it becomes
possible to deduce the performances of the PMTs in real conditions from their performances in
benchmark with better precision.

Studies about temperature dependency had already been conducted before in Kamioka, but
only on small ranges (around 14± 1°C), and with the problems inherent to the measurements in
Kamioka (see Section 2.2.2). Therefore, this study is the first one on a large temperature range
and in another place than Kamioka.

3.2 Experimental Setup

The physical setup remains the same as in the previous chapter 2.3.1: 8 PMTs (4 original
PMTS and 4 improved PMTS ) are installed in a dark room and plugged to two oscilloscopes,
that can acquire the full signal. The dark room is equipped with thermometers that can monitor
the temperature in real time, and the temperature inside the dark room can be set at any value
between −5°C and 22°C.

In order to have measurements on all the range of temperature, the temperature has been set
at 2°C for a small period of time, and then the cooling was stopped to let the room warm up to
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22°C. This operation was done a second time, cooling down at −5°C this time, before letting the
room warm up again. The temperature variations are shown in Figure 3.1, as well as the dark
rate measurements during the same period.

Figure 3.1: Left: Variations of temperature during the study on dark rate dependency on
temperature. Right: Measurements taken during this study. the red rectangles indicate that
the measurements in these areas were not taken into account, as the variation of temperature
was too abrupt.

It is obvious on the temperature profile that the measurement points will not be equally
distributed in the temperature range, and this is confirmed if we plot the dark rate as a function
of temperature, as shown in Figure 3.2. One can also see that the huge variations of dark rate
(±0.5kHz) remain unfortunately. But there is still a sufficient amount of points to study the
temperature dependency, furthermore given a model that just needs to be fitted.

Figure 3.2: Dark rate dependency on temperature for the eight PMTs.

3.3 Scintillation and thermal noises

As we can see on Figure 3.2, the overall shape of the dark rate as function of temperature
presents at least two components: one increasing at T → 0 and one increasing at T → +∞.
These two components can be explained and modeled by looking in details to the origins of dark
rate, which are glass scintillation and thermal electrons.
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3.3.1 Thermal noise

Due to nonzero temperature, thermal electrons are present in the photo-multiplier tubes and
will eventually hit the anode. These hits are then recorded in the signal and contribute to the
dark rate as "fake hits". Because of this purely random process, the thermal hits are statisti-
cally uniformly distributed in time. Therefore, the distribution of the time differences between
two consecutive thermal hits follows an exponential distribution. This constitutes the green
component on Figure 3.3, that is explained in section 3.3.3.

The dependency on temperature of the thermal noise can be modeled by the Richardson
distribution, which is the following:

rR(T ) = AT 2e−
W
kT

where W is the work function of the material, k is the Boltzmann constant and A is a scaling
parameter.

3.3.2 Scintillation noise

Glass scintillation is a phenomenon that can occur due to the interaction between the glass
surrounding the photo-sensor and the gas between the glass and the photocathode. This scintil-
lation produces photons that will eventually hit the photocathode and produce hits in the PMT.
The "fake hits" originated from glass scintillation are characterized by the fact that they are not
uniformly distributed in time but grouped, as it is more likely that many photons are generated
by the same glass scintillation event. This results in a distribution of time differences between
consecutive scintillation hits that is different than an exponential distribution and more grouped
around low values. This constitutes the red component on Figure 3.3, that is explained in section
3.3.3.

Scintillation noise dependency on temperature can be modelled empirically by an exponential
law, as follows:

rnt(T ) = GAce
− T

Tr

where Ac is the area of the photocathode, G is a scaling parameter and Tr is a shape parameter.

3.3.3 Noise separation

As explained above, these two noises are distinguished by the distribution of time distributions
between consecutive hits, which is exponential for thermal noise and grouped around 0 for scin-
tillation noise. Figure 3.3 shows a plot of such distribution, where the exponential component
is fitted on high time values and shown in green, and the scintillation component is deduced as
the remaining component.

Unfortunately, for real data acquisition, that is done only during one second for each mea-
surement, there are not enough hits to fit these components precisely on such plot. This is why
we chose instead to apply cuts to separate these two components. Thus, Figure 3.3 shows that
a cut at 150µs allows to extract a time range [150;+∞[ on which thermal noise is dominant,
whereas a cut at 20µs allows to extract a time range [0; 20] on which scintillation noise is dom-
inant. The partial components thus extracted are reasonably expected to represent the shape
of dependency on temperature, which will allow a better evaluation of the shape parameters in
rR(T ) and rnt(T ).
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Figure 3.3: Distribution of time differences between consecutive hits of dark noise, and fitting of
thermal (in green) and scintillation (in red) components. The orange dashed lines show the cuts
that are applied to extract these two components.

3.4 Fitting the model

After establishing the model (3.3), we now have to fit this model on the data. The complete
model reads as: r(T ) = rnt(T )+rR(T ) = GAce

− T
Tr +AT 2e−

W
kT with four parameters to fit: GAc

(the product is considered as one unique parameter), Tr, A and W .

Unfortunately, fitting the model directly does not work, as the data is not qualitative enough
to fit four parameters with an acceptable precision. Most of the fitting algorithms, such as
non-linear least squares, do not converge at all. Thus, more tricks are needed to perform these
fit.

3.4.1 Normalization

First of all, most of the convergence problems can be solved by slightly changing the formula
so that the parameters are in a controllable range. Therefore, the formula of r(T ) is modified as
follows:

r(T ) = GAce
−T−T0

Tr +A

(
T

T0

)2

e
−
(

W
T
−W

T0

)

where T0 is chosen as T0 = 15°C to be in the range of the data.

With such normalization, the scale parameters become easily controllable, as they should be
equal to the dark rate at T0, r(T0), which is measured. Thus, we can restrain the search of these
parameters in the range [0; 5] kHz.

Concerning the shape parameters, the work function W is known to be in the range [0; 1] eV,
and a quick look at the shape of the data show that a reasonable range for Tr is [0; 1000] K.
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3.4.2 Fitting the scintillation parameters

Even after normalizing the formula, a direct fit of these four parameters gives imprecise and
even nonphysical values. However, we described earlier a method to separate scintillation and
thermal components (see Section 3.3.3), which can allow better precision separately on scintilla-
tion and thermal parameters.

So, the cut at 20µs shown in Figure 3.3 allows to extract the scintillation part of the data, on
which we can fit the normalized function rnt(T ). The results are shown in Figure 3.4.

Figure 3.4: Scintillation part of the dark rate as a function of the temperature for the 8 PMTs.
The dashed line is the fit by rnt(T ) for each PMT separately, and the purple dotted line is the
fit by rnt(T ) with shared Tr parameter, taken as the average of the 8 Tr parameters. The GAc

parameter is kept different for each PMT.

Even if it is still not very precise, the errors on Tr are about 5%, which is acceptable, while
the error on GAc is very small (about 1%) because of the normalization.

In principle, the scintillation phenomenon is supposed to be the same for all the PMTs. The
scale parameter, representing the amount of these hits happening, may not be the same for all
PMTs, but the shape parameter Tr, intrinsic to the physical phenomenon is supposed to be the
same. Therefore, for everything below, we keep one unique Tr parameter for all the PMTs, which
is determined as the average on the 8 PMTs:

Tr = 109± 14K

This comes of course with a bigger error, but it is more physically correct and expected to be
more generalizable.

3.4.3 Fitting the thermal parameters

Fitting the thermal parameters appears to be slightly more difficult than expected. We can
first expect to follow the same procedure as for the scintillation parameters, that is, fitting the
function rR(T ) on the thermal part of the data using the cut at 150µs highlighted in Figure 3.3.
But, it is clearly visible on the data (see Figure 3.5) that the noise separation is imperfect and
that some scintillation component remain even after the cut.
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One first approach that is considered is fitting the rR(T ) function only on the high temperatures
range [15; 22] °C. This is done in Figure 3.5. However, the errors for W are particularly high
with this method (usually around 15%, up to 100% and above), and the values obtained for W ,
which are W ∈ [0; 0.15] eV, are rather nonphysical.

Figure 3.5: Thermal part of the dark rate as a function of the temperature for the 8 PMTs. The
dashed line is the fit by rR(T ) for each PMT separately, only in the range [15; 22] °C. The range
[−5; 15] °C clearly shows that a scintillation component remains.

Another approach is to include the scintillation function rnt(T ) in the fit also, that is, fitting
with the whole function r(T ). This allows to perform the fit on the whole range and to get rid
of the remaining scintillation part at the same time. For the scintillation part, the Tr parameter
evaluated in Section 3.4.2 is used. The results of this method are presented in Figure 3.6. Note
that only the fitting method is different, but the data is exactly the same as in Figure 3.5.

With this method, the errors on W are still very high, but the values are closer to the expected
values for work functions. Therefore, we use this method to evaluate the W parameter.

This time, the parameters are kept different for each PMTs, as thermal electrons noise is not
expected to be the same for all PMTs. In particular, the work function W can differ between
the PMTs and is difficult to control in the confection. Thus, we could determine a range for the
W parameters, which is the following:

W ∈ [0.1; 0.7] eV

The W parameters evaluated here for each PMT will now be kept fixed for the following.

3.4.4 Scaling the two components

Now that we know the shape of the scintillation and the thermal components (that is the Tr

and the W parameters), all that’s left is to determine the weights, or scale, of these components
in the whole data (without cut), including both full scintillation and full thermal components.
This is done simply by fitting the r(T ) = rnt(T ) + rR(T ) function on the whole data, while
keeping Tr and W fixed. The results are presented in Figure 3.7.
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Figure 3.6: Thermal part of the dark rate as a function of the temperature for the 8 PMTs. The
dashed line is the fit by rnt(T ) + rR(T ) for each PMT separately. The Tr parameter evaluated
in Section 3.4.2 is used, while all the other parameters are optimized to fit the data.

This time, given we are fitting the scale of the two components at the same time, the error
on the GAc and A parameters are very high (around 20% for GAc and more that 100% for A).
Even though, it still allows to establish ranges for the values of these parameters, that could be
precised in the future with other studies. The ranges obtained are the following:

GAc ∈ [3.2; 4.2] kHz

A ∈ [0.2; 1.8] kHz

3.5 Predictions of the model

Although the purpose of this study was to establish the model with adequate ranges for the
parameters based on the available data, we can show preliminary results that the model implies.
These results are summarized in Figure 3.8. Tmin is the temperature at which the dark rate is
minimal, while r(Tmin) is the value of this minimum. The particularly interesting values are the
following differences:

• r(14°C) − r(Tmin) indicates the additional noise we get by working at 14°C in Hyper-
Kamiokande instead of the optimal temperature Tmin. This additional noise is 0.08 ±
0.13kHz in average, which is low enough to allow not making modifications of the PMT
design or the temperature of the tank.

• r(25°C)− r(14°C) allows to predict the dark rate in the tank of Hyper-Kamiokande based
on the measurements at Hamamatsu (which are made at 25°C). This difference is 0.14 ±
0.37kHz.
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Figure 3.7: Dark rate as a function of the temperature for the 8 PMTs. The dashed line is the
fit by rnt(T )+ rR(T ) for each PMT separately. The Tr and W parameters evaluated in Sections
3.4.2 and 3.4.3 respectively are used, while all the scale parameters GAc and A are optimized to
fit the data.

Figure 3.8: Predictions of the model for some specific values. Tmin is the value at which the dark
rate r(·) is minimal. 14°C is the temperature inside the tank of Hyper-Kamiokande and 25°C is
the temperature for the test measurements at Hamamatsu.

Although they are not very precise, these values are the first ones for these parameters, and
they allow to establish orders of magnitude and tendencies. Further studies may involve different
measurement setup and have more precise measurements, leading to a better estimation of the
parameters of the model. Also, whereas the scintillation component of the noise is quite well
fitted, we seriously lack measurement at higher temperature to have fit precisely the thermal
component of the noise. As the thermal component is the preponderant one between 14°C and
25°C, it is the most important one in the model, therefore further studies should focus on getting
measurements at higher temperatures (ideally up to 30°C).
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Chapter 4

Auxiliary work on neutron tagging
analysis

Whereas my main work during this internship was about PMTs and dark noise, I was also
assigned to a secondary work in parallel of PMT studies, which is a data analysis study for
neutron tagging using machine learning. Given the time I could dedicate to this study, and
the many problems that occured and that I figured out during the investigations, the purpose
was not to directly have interesting results, but rather to setup a preliminary work in order to
give it to another student who will continue this research. Therefore, this is mainly a work of
documentation and reproducing previous studies in an easy-to-use environment, so that further
investigations and improvements could be led by another student afterwards.

As a second feature that emerged from this preliminary study, I could also identify many key
points that make such a study difficult to be performed without some specific conditions. Mainly,
I figured out that the state-of-the-art open-source simulation tool for WCDs at high energy is
actually quite bad at low energy, so that only the internal tools of SK collaboration could be
used. Similarly, Gadolinium is a very central feature of neutron capture in Super-Kamiokande
and Hyper-Kamiokande, but its simulation is currently handled very bad, which makes machine
learning methods trainable only for hydrogen neutron capture. These key points that were
highlighted in this study will hopefully allow a better preparation for the upcoming studies held
by my laboratory in this field.

4.1 Introduction on Neutron Capture Concerns

Neutron Tagging is one of the most important topics in low-energy neutrino research. In-
deed, being able to detect neutron captures in Super-Kamiokande or Hyper-Kamiokande helps
discriminating neutrino and anti-neutrino events, which then leads to the estimation of the CP
violation phase δCP in the leptonic sector.

As explained in section 1.3, the main interaction process for neutrinos at low energy is through
charged current, and specifically inverse beta decay (IBD). There are two IBD processes, a
neutrino induced one, and an anti-neutrino induced one, whose equations are the following:

{
ν̄l + p → l+ + n

νl + n → l− + p

The outgoing charged leptons or anti-leptons are indistinguishable (for a same flavour), as they
have the same momentum and energy distributions, and produce exactly the same Cherenkov
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rings. However, the outgoing nucleus (proton or neutron) will have different behaviours. Whereas
protons will simply thermalise and produce no signal, neutrons will be captured by another atom
after thermalisation, and this capture will produce gamma rays that can be detected. A schematic
representation of a neutron capture event is shown in Figure 4.1.

Figure 4.1: Schematic representation of a neutron capture event by a gadolinium atom. Image
originated from [7]

The nature of the emitted gamma rays after the neutron capture depends on the atom the
capture is made by. For hydrogen atom, the average time between the primary vertex and
the neutron capture is 204 µs, and only one gamma ray is emitted at 2.2 MeV. However, with
gadolinium doping, the average time before capture by a gadolinium atom is only 20µs, and the
multiple emitted gamma rays have a total energy of about 8MeV . These properties motivated
the insertion of gadolinium inside the water tank, which consequently improved neutron tagging
performances.

4.2 Motivations for this study

While the usual methods for neutron tagging, and the most performant ones, work on various
reconstructed parameters, some techniques begin to be developed to deal with the raw informa-
tion of the PMT hits. Given that this information is very sparse and difficult to extract from
noise, most of such techniques focus on machine learning. However, in 2023, these techniques
cannot perform better than other existing methods yet.

The overall purpose of this study is therefore to investigate some techniques using the raw
information of recorded PMT hits to perform neutron tagging task. Reproducing the work
made by other researchers is a necessary step, as well as exploring some small deviations of it,
everything being developped in an understandable and user-friendly way so that it can be used
as a ground base for further studies.

Another interesting point that can be explored is the preselection that is held before the
analysis. Current methods, even those working directly on raw data, are always performed after
a preselection based on thresholding the number of hits in given time windows. However, no
research study has shown interesting results yet about removing this preselection to include it in
the machine learning process. While this could not be explored in details in this study, it is left
for further investigations.
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4.3 Data Simulation

4.3.1 Simulation tools

In order to develop and train machine learning methods for neutron tagging, we need a suffi-
cient amount of data of neutron capture events in the water tank. Data simulation is absolutely
necessary for machine learning methods, because it allows to have labeled data (that is, events
for which we know exactly if they contain a neutron capture or not), but this raises the issue
of the quality and the fidelity of this simulation. Indeed, the performances of the model on real
data will highly depend on the quality of the data it is trained on.

Despite this not being the first thing we think about, this issue is actually a big problem for
this kind of studies. For this work, we use the opensource tool WCSim [10], which allows to
simulate particles propagation and interactions in water, as well as the induced signal and noise
of the PMTs for a given Water Cherenkov Detector architecture. This tool is widely used for high
energy studies for WCDs, which led us to think it would be appropriate for our study. However,
it appeared that it is actually far less faithful for low energy events. The community of physicists
working on low energy being much smaller, it took us time to realize this problem.

Currently, better tools exist especially for Super-Kamiokande, such as SKDetSim or SKG4,
but Super-Kamiokande Collaboration membership is needed to access these tools, therefore they
cannot be used in this study. Another source that makes simulated data unrealistic is the noise.
Whereas real noise is composed of many sources (including muon spallation, afterpulses, radon,
etc.), WCSim can only simulate PMT dark noise, which leads to incomplete and thus unrealistic
noise. Consequently, the results of this study must be understood only as preliminary results,
but not as directly applicable to real data. A full comparison between WCSim and SKDetSim
can be found in [2].

Anyway, after experimenting myself and talking to experts in the subject, I came to identify
the current consensus about these tools:

• A same model gives less accidental coincidences on SKDetSim data than on WCSim data
(for the same signal efficiency), with a reduction factor that can reach 10.

• Replacing simulated noise by real noise data from SK ("dummy triggers") also improves
the efficiency of the models consistently.

4.3.2 Simulated data for this study

In order to be able to test the models quickly, first "simple" datasets have been generated.
The purpose being to discriminate between neutron capture events and noise events, two types
of events have been generated:

• 100000 events of 200ns of 2.2 MeV gamma rays (with vertex inside the so called fidutial
volume, that is, 2m away from all the borders of the internal tank), superposed with
simulated dark noise at 4.2 kHz.

• 100000 events of 200ns of simulated dark noise at 4.2 kHz.

A model can then be trained to classify these two types of events, which can give a first
indication of the performances of the model.
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However, the data this kind of models are usually trained on are different. When analysing
real SK data, the primary electron or positron event generates a trigger, and all the hits during
a large time window of 535 µs are recorded after this. The search for neutron capture event is
then performed on this long sequence. In order to reproduce that, we usually take sequences of
about 500 µs of dummy trigger, and then randomly add simulated 2.2 MeV gamma rays inside
it. The model is therefore charged to find the times when there is a neutron capture in these
sequences. Figure 4.2 shows the usual setup for the simulation of neutron capture events.

Figure 4.2: Construction of neutron MC, issued from [5]. After 18µs dummy trigger data is
convoluted with simulated neutrons produced by an atmospheric neutrino interaction.

Unfortunately, given the time and resources dedicated to this study, this type of data could
not be generated and analysed properly.

4.4 Data analysis with graph neural networks

Graph neural networks (GNNs) are a class of machine learning models, which is very generic
and adaptable for different data formats. They are particularly convenient for the analysis of
Super-Kamiokande of Hyper-Kamiokande data, as the data (a collection of hits on a cylinder in
which we want to identify rings) has a very unusual topology, and is not well fitted for usual
methods. However, GNNs are less powerful and less explored by the community than other
specific architectures, which makes them difficult to take in charge and exploit. Nowadays, they
are nearly the only machine learning architecture used for raw WCD data analysis at low-energy.

More explanations about GNNs and the way they are used for WCD data analysis are given
in Appendix A. An illustration of a GNN used for vertex reconstruction from another study is
given in Figure 4.3

The way GNNs are used for such analysis is usually the following:

• A preselection phase is performed, consisting in selecting the time windows which are likely
to contain an identifiable neutron capture event. This usually consists in a treshold on the
number of hits in a given window (e.g. N10 ≥ 7, N10 being the number of hits within a
10µs window).

• Within the preselected windows, a graph is constructed. The nodes of the graph are the hits
themselves (containing the position, timing and charge information), while the edges are
usually computed with a clustering algorithm such as k nearest neighbours, and eventually
associated with a weight depending on a certain form of distance between the hits. Many
graph architectures exist, but none really emerged as a consensus.

• Once the graph is built, the GNN model can be executed on it. Many architectures also
exist for the model itself, but they all share the same global shape.
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Figure 4.3: Illustration of a GNN used for vertex reconstruction at low energy in Super-
Kamiokande. Image issued from [6]

4.5 Model evaluation in neutron tagging

In usual neutron tagging tasks, two metrics are important to evaluate a model: the efficiency,
and the number of accidental coincidences per event.

• The efficiency is the proportion of real neutron capture events that are actually identified
as neutron capture events by the model.

• The number of accidental coincidences per event is the number of noise windows that are
said to contain a neutron capture by the model (while they do not) for each neutrino event.

Thus, when one creates a model, the objective is to maximize the efficiency while keeping the
number of accidental coincidences per event low enough at the same time. Usually, for machine
learning models, the model will compute a score for an input (here, for a time window of data),
which is supposed to represent the likelihood of containing a neutron capture or not. Then, we
can fix a threshold on this score, saying all the scores above the threshold mean we consider
there is actually a neutron capture, and vice-versa. The metrics of efficiency and accidental
coincidences per event then depend on this threshold, which we can fix in order to force the
number of accidental coincidences per event to be low enough. Figure 4.5 for example shows
curves of accidental coincidences per event as a function of the efficiency (for a moving threshold),
called ROC curve.

Furthermore, as explained in Section 4.4 the central machine learning model (in our case, the
GNN), is usually preceded by a preselection phase (see Section 4.4). This preselection phase
itself can be associated with an efficiency and a number of preselected backgrounds per event,
which are taken into account in the global metrics of the model.
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Because of the way my data was simulated (see Section 4.3.2), the preselection cannot be
performed exactly the same way than in real conditions, but we can still compute an efficiency
and a background/event that are relevant. The efficiency of the preselection in my case is defined
similarly as the proportion of 200ns neutron capture events that are actually preselected, and
the number of backgrounds per event is defined as the proportion of 200ns noise windows that
are preselected, multiplied by 2500 to take into account the fact that studies on real data search
the neutron capture in 500µs windows with a 200ns sliding window.

4.6 Establishing the impact of the training context

While the study initially focused on reproducing existing methods and improving them, I
quickly realized that the results I obtained were far worse than expected. As explained in Sec-
tion 4.4, this is essentially due to the quality of the simulated data and noise. Therefore, I
decided to add a new goal to this study, which is establishing a comparison between the perfor-
mances of a given model in two different training contexts: the canonical one with SKDetSim
data and Dummy Trigger noise, and the one used by non-members of the collaboration with
WCSim data and noise. Such comparison will hopefully allow to establish more accurate refer-
ence performances for further studies using WCSim. Indeed, a model trained with WCSim could
be compared to this reference model thanks to this "translation of performances". However,
whether this comparison reflects the actual relative performances of the models on real data is
still unclear.

The model used for comparison is one made by Antoine Beauchêne (LLR), whose results were
presented at last Super-Kamiokande Collaboration Meeting (in June 2023).

• This model is initially trained on SKDetSim data with dummy trigger noise. The prese-
lection used has an efficiency of 1.07 (with 96% distincts events extracted, as one neutron
capture event can trigger the preselection algorithm more than once), and 1200 back-
grounds/event. The results of the model trained in this setting are presented in Figure
4.5.

• I retrained this model with WCSim data and WCSim dark noise (at 4.2kHz). The pres-
election used here has similar results: an efficiency of 91% and 1150 backgrounds/event.
The results of the model trained in this setting are presented in Figure 4.5.

As one can see, the results are very different. In particular, we retrieve the orders of magnitude
mentioned above in Section 4.3.1, concerning the loss of performance between the two settings.
For a given number of accidental coincidences per event, say 0.02 (a usual chosen threshold for
this kind of tasks, see [1]), the efficiency is 30% in canonical setting, and 1% in our setting.
We thus observe a reduction factor of roughly 30 for the efficiency in this region. For higher
number of accidental coincidences per event, for instance 1, we observe an efficiency of 60% in
the canonical setting and 10% in our setting, that is, a factor of 6.

Establishing this comparison was particularly useful for my study, as it allowed me to un-
derstand the origin of the low performances of my models. Indeed, I could reproduce similar
performances to these ones with different GNN models (though all based on the same concept,
with small variations in the architecture of the model or the clustering algorithms for graph
construction), and this comparison helps comparing them to the state-of-the-art. Unfortunately,
given their performances and the time I spent to understand that and build this comparison
study, these models are not worth being presented in details in this report.
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Figure 4.4: ROC curve of the model made by Antoine Beauchêne (LLR) trained on SKDetSim
data with dummy trigger noise (canonical setting).

Figure 4.5: ROC curve of the model made by Antoine Beauchêne (LLR) trained on WCSim data
with simulated dark noise.
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Conclusion

Only armed with the knowledge I learned in master lectures, I had to dive head first into the
rich and unknown world of experimental particle physics, beginning with the gigantic Hyper-
Kamiokande experiment. Retrospectively, I can say that my appetite for discovery and under-
standing of this new world is satisfied in a better way that I even imagined.

First, the devotion of my supervisor, Nishimura-san, allowed me to access many opportunities
of discovery into the work of the collaboration, which I seized as much as possible. I managed
not only to see, but also to contribute to the work on many aspects at different levels of the
experiment, from hardware and electronics near the detector itself to the abstract analysis of
invisible signals at low energy, passing by the analysis of the PMT signal and behaviour.

Not all my projects evolved as expected, as one can understand by reading my report on
neutron tagging analysis, but the adaptation and redesigns of the project that followed were not
less interesting, as they are part of the experimental process. Moreover, knowing that my work
will be pursued in the future by some other student in the laboratory is very satisfying. However, I
am also proud of the success of my studies on PMT dark rate, which led first to political decisions
at the scale of the collaboration, that is the restart of the PMT mass production, and second
to a presentation at the Hyper-Kamiokande international collaboration meeting. I am now filled
with the feeling of having contributed usefully to an enterprise beyond myself.

This internship was a key step in my studies in High Energy Physics, as it was for me the
discovery of the experimental world. While my master course is half its way, I am now considering
doing my PhD in experimental physics, because of this global context of collaboration that I like
very much. However, I also lack knowledge of the theoretical world, and I plan to dedicate all
my efforts in discovering it during my next semester at ETH Zurich. Hopefully, this will allow
me to be well armed to pave my path in the world of research.
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APPENDIX

A Graph neural networks for WCDs

A.1 Concept of graph neural networks

The main tool that we are using to perform data analysis at low-energy in WCDs is Graph
Neural Networks, as they can have similar advantages as Convolutional Neural Networks (CNNs),
but also allow a greater flexibility. Indeed, Convolutional Neural Networks are based on convolv-
ing a grid-shaped data (such as a sequence or an image, which contains a vector of data, called
features, at each cell of the grid) with a kernel (see Figure 6). However, Super-K or Hyper-K
data have the geometry of a cylinder, and are therefore very unsuitable for CNNs. Furthermore,
for low energy events, the data is very sparse (there are very few hits, which are distanced from
one another), which make it even less suitable for CNNs.

Figure 6: Illustration of a Convolutional Layer in a Neural Network. The kernel moves on the
input grid, selecting successively a small part of the data and computing the associated output
by a linear transformation of the local features. A new output grid is thus created.

On the other hand, graph neural networks (GNN) allow to manage these two problems. To
the purpose of this study, deep knowledge of Graph Neural Networks is not needed, and we will
only explain some key ideas. Instead of organizing the data as a grid, we can more generally
organize it as a (eventually weighted and/or oriented) graph (the grid being a specific type of
graph). As for the grid, the nodes of the graph contain the features, but the edges can also carry
information. Then, the so called Graph Convolutional Layers allow to transform such graph into
a new one, thanks to local information aggregation at a node from its neighbours, or message
passing through the edges (see Figure 7).

The way we use Graph Neural Networks for WCDs is typically by making a node for each
PMT hit in the considered event (or time window), assigning it some features (typically the
position (x, y, z) of the PMT, the charge q of the hit and the time t of the hit), and linking the
nodes according to some clustering algorithm (for example k-nearest neighbours). Further details
about the theory of Graph Neural Networks and the way they are used for neutron tagging in
WCDs are given in [8].
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Figure 7: The Edge Convolution operation is shown for a pair of nodes xi and xj . The node
feature vectors are passed through a fully connected layer hΘ() with learnable weights Θ to
calculate a set of edge features eij between the node pair. All nodes then update their vector
representations by aggregating these learned edge features. In this example, the new represen-
tation of xi, x′i is calculated by aggregating the set of learned edge features eiji1 , ..., eiji5 . Figure
retrieved from [9].

A.2 Graph construction

An essential step for applying GNN models to WCD data is to transform the raw data into a
graph. The hits recorded in a given time window are the nodes of the graph, whereas there are
multiple ways to select the edges. Usually, a clustering algorithm such as k nearest neighbours in
the hit space (containing position, time and charge data) is used. But it is also possible to take
only space or time distance into account, or compute some weights first (typically the inverse
distance between the hits) and keep the edges with the highest weights. None of these methods
emerged as a consensus, and no significant differences are observed.

A.3 Usual models

The architecture of the models developed in such study is the following:

• Four graph convolutional layers. The size of these layers, that is the number of features
per node of the graph at the output of each layer, did not have big influence on the results,
so it was typically chosen to be 5 → 16 → 32 → 64 → 128 (the initial 5 corresponding to
(x, y, z, t, q), the position, time and charge of the hits). However, the depth of the network,
that is the number of layers, had significant effect on the performances of the model up to
four layers.

• One mean pooling layer. This layer consists in aggregating the information of all the
nodes of the graph by taking the average. Therefore, it takes as input a graph with 128
features per node (as it is the output of the last graph convolutional layer), and gives as
output only one vector of dimension 128, which is the average of all the feature vectors (of
dimension 128 each) of the nodes.

• Two fully connected layers. These layers simply transform a vector into another vector
(see Figure 8), by applying a linear function followed by elementwise nonlinear functions
(typically the ReLU function, see Figure 8). The sizes of these layers are typically chosen to
be 128 → 32 → 1. The final output is thus a number, that is the score used to discriminate
between the two types of events (noise or 2.2MeV gamma ray).

The training process for this model is the very usual one for classification task. The binary
cross entropy loss function is used to optimize the model :

L = y log(ỹ) + (1− y) log(1− ỹ)
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Figure 8: Left: Schematic representation of fully connected layers, consisting in linear functions
followed by activation functions. Right: The ReLU function (Regular Linear Unit), which is
the most generally used as elementwise nonlinear function (or Activation Function) for machine
learning models.

where y is the true label associated with an event (0 if it is noise and 1 if it contains a neutron
capture event), and ỹ is the output of the model, normlaized by a sigmoid function to be between
0 and 1.

A.4 Models for further investigations

An interesting class of models that could be developed to get rid of the preselection step (see
Section A.5) could be a graph neural network mixed with a time-convolutional neural network
or a recurrent neural network, which are two architectures made for dealing with time series.

Time-convolutional neural networks are basically the same as convolutional neural networks
presented above, but only in one dimension (time) instead of two (x and y for example for an
image). Thus, we could use such networks on the long time series of hits during the 500ms after
the primary event. However, the function applied to the moving input selected by the kernel
would be itself a graph convolutional layer instead of simply a linear function, which would take
advantage of both strengths of time-convolutional and graph neural networks.

On the other side, recurrent neural network are another way of dealing with time series. The
basic concept is to recursively build an output by feeding successively the data in time-order
to the network. This class of networks actually include a wide diversity of models, but they all
share this basic concept of recurrence. Then, as well as for the previous method, graph neural
convolutional layers can be used to treat the successive inputs.

These methods could not be explored in details in this study, and therefore no precise archi-
tecture nor results are presented here. They could however be explored by further studies in the
laboratory.

A.5 Preselection

Usual neutron tagging algorithms always include a phase of so called preselection, which con-
sists in applying simple criteria to select the specific small windows on which more developed
algorithms (typically machine learning models) will be applied. Furthermore, This preselection
allows the selected samples to be well suited for further treatment, which typically includes
having enough hits.
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An example of common first preselection algorithm is given by the following criteria [5]:

N10 ≥ 7 N10 ≤ 50 N200 ≤ 200

Where N10 is the number of hits in a small sliding window of 10ns, and N200 is the number of
hits in the 200ns window surrounding the 10ns window.

The typical expected results after this preselection are 33.2% of efficiency (proportion of re-
maining neutron events among all the neutron events), and 4.5 mis-tagged background events
per neutrino event.

However, other ways of doing preselection exist, as shown in Section 4.6, involving preselecting
much more events (and thus much more mis-tagged backgrounds per event), but also much higher
preselection efficiency.
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